, 43:50 | Cite as

Maximum power per VA control of vector controlled interior permanent magnet motor

  • Thakur Sumeet SinghEmail author
  • Amit Kumar Jain


Maximum Torque Per Ampere is the commonly used technique for operating interior permanent magnet (IPM) motor while little work is reported towards maximum power-factor operation i.e., Maximum Power Per Volt-Ampere (MPVA). The MPVA operation allows maximum-utilization of the drive-system. The control technique is developed using detailed mathematical model of IPM motor in MPVA, and the solution to the quartic equations involved is derived and analyzed. The solution is utilized to develop LUT for implementation of MPVA control. The comparison of MTPA and MPVA technique is established to demonstrate its merits and demerits. The proposed algorithm is supported by simulation and experimental results on a 5.5 KW vector controlled IPM drive.


Permanent magnet motor unity power factor maximum VA utilization current minimization 

List of symbols


stator resistance (Ω)


direct(d)-axis inductance (H)


quadrature(q)-axis inductance (H)


P.M. flux linkage (wb)


d-axis stator voltage (V)


q-axis stator voltage (V)


d-axis stator current (A)


q-axis stator current (A)


d-axis stator flux linkage (wb)


q-axis stator flux linkage (wb)


rotor speed in electrical rad/s


rotor speed in mechanical rad/s


rotor position (rad)


electrical torque developed (Nm)


rated stator flux (wb)


rated stator current (A)


rated voltage peak in dq-frame (V)


saliency ratio


  1. 1.
    Jahns T M, Kliman G B and Thomas Neumann W 1986 Interior permanent-magnet synchronous motors for adjustable-speed drive. IEEE Trans. Ind. Appl. 22(4): 738–747CrossRefGoogle Scholar
  2. 2.
    Jahns T M 1987 Flux-weakening regime operation of an interior permanent-magnet synchronous motor drive. IEEE Trans. Ind. Appl. 23(4): 681–689CrossRefGoogle Scholar
  3. 3.
    Morimoto S, Sanada M and Takeda Y 1994 Wide-speed operation of interior permanent magnet synchronous motors with high-performance current regulator. IEEE Trans. Ind. Appl. 30(4): 920–926CrossRefGoogle Scholar
  4. 4.
    Bae B-H, Patel N, Schulz S and Sul S-K 2003 New field weakening technique for high saliency interior permanent magnet motor. In: Conference on Indsutry Application, pp. 898–905Google Scholar
  5. 5.
    Jung S-Y, Hong J and Nam K 2013 Current minimizing torque control of the IPMSM using ferrari’s method. IEEE Trans. Power Electron. 28(12): 5603–5617CrossRefGoogle Scholar
  6. 6.
    Lee J, Nam K, Choi S and Kwon S 2009 Loss-minimizing control of PMSM with the use of polynomial approximations. IEEE Trans. Power Electron. 24(4): 1071–1082CrossRefGoogle Scholar
  7. 7.
    Consoli A, Scelba G, Scarcella G and Cacciato M 2013 An effective energy-saving scalar control for industrial IPMSM drives. IEEE Trans. Ind. Electron. 60(9): 3658–3669Google Scholar
  8. 8.
    Schiferl R F and Lipo T A 1990 Power capability of salient pole permanent magnet synchronous motors in variable speed drive applications. IEEE Trans. Ind. Appl. 26 (1): 115–123CrossRefGoogle Scholar
  9. 9.
    Moussa M F, Helal A, Gaber Y H and Youssef A 2008 Unity power factor control of permanent magnet motor drive system. In: International Conference on Power System, Aswan, 2008, pp. 360–367Google Scholar
  10. 10.
    Solution to quartic functions. Accessed January 5 2015.
  11. 11.
    Foo G H B and Zhang X 2016 Constant switching frequency based direct torque control of interior permanent magnet synchronous motors with reduced ripples and fast torque dynamics. IEEE Trans. Power Electron. 31(9): 6485–6493CrossRefGoogle Scholar
  12. 12.
    Zhong L, Rahman M F, Hu W Y and Lim K W 1997 Analysis of direct torque control in permanent magnet synchronous motor drives. IEEE Trans. Power Electron. 12(3): 528–536CrossRefGoogle Scholar
  13. 13.
    Rahman M F, Zhong L and Lim K W 1998 A direct torque-controlled interior permanent magnet synchronous motor drive incorporating field weakening. IEEE Trans. Ind. Appl. 34(6): 1246–1253CrossRefGoogle Scholar
  14. 14.
    Inoue T, Inoue Y, Morimoto S and Sanada M 2015 Mathematical model for MTPA control of permanent-magnet synchronous motor in Stator flux linkage synchronous frame. IEEE Trans. Ind. Appl. 51(5): 3620–3628CrossRefGoogle Scholar
  15. 15.
    Kallio S, Karttunen J, Peltoniemi P, Silventoinen P and Pyrhonen O 2014 Determination of the inductance parameters for the decoupled d-q model of double-star permanentmagnet synchronous machines. IET Electric Power Appl. 8(2): 39–49CrossRefGoogle Scholar
  16. 16.
    Agarlita S C, Coman C E, Andreescu G D and Boldea I 2013 Stable V/f control system with controlled power factor angle for permanent magnet synchronous motor drives. IET Electric Power Appl. 7(4): 278–286CrossRefGoogle Scholar
  17. 17.
    Pellegrino G, Armando E and Guglielmi P 2012 Direct-flux vector control of IPM motor drives in the maximum torque per voltage speed range. IEEE Trans. Ind. Electron. 59(10): 3780–3788CrossRefGoogle Scholar
  18. 18.
    Wallmark O, Galic J and Mosskull H 2012 Sensorless control of permanent-magnet synchronous motors adopting indirect self-control. IET Electric Power Appl. 6(1): 12–18CrossRefGoogle Scholar
  19. 19.
    Hoang K D, Ren Y, Zhu Z Q and Foster M 2015 Modified switching-table strategy for reduction of current harmonics in direct torque controlled dual-three-phase permanent magnet synchronous machine drives. IET Electric Power Appl. 9(1): 10–19CrossRefGoogle Scholar
  20. 20.
    Guo H, Wu Z, Qian H, Yu K and Xu J 2015 Statistical analysis on the additional torque ripple caused by magnet tolerances in surface-mounted permanent magnet synchronous motors. IET Electric Power Appl. 9(3): 183–192CrossRefGoogle Scholar
  21. 21.
    Hekmati P, Yazdanpanah R and Mirsalim M 2015 Design and analysis of double-sided slotless axial-flux permanent magnet machines with conventional and new stator core. IET Electric Power Appl. 9(3): 193–202CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Department of Electrical EngineeringIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations