Sadhana

, Volume 36, Issue 5, pp 917–932 | Cite as

Automatic analysis of multiparty meetings

Article

Abstract

This paper is about the recognition and interpretation of multiparty meetings captured as audio, video and other signals. This is a challenging task since the meetings consist of spontaneous and conversational interactions between a number of participants: it is a multimodal, multiparty, multistream problem. We discuss the capture and annotation of the Augmented Multiparty Interaction (AMI) meeting corpus, the development of a meeting speech recognition system, and systems for the automatic segmentation, summarization and social processing of meetings, together with some example applications based on these systems.

Keywords

Speech recognition multimodal interaction Augmented Multiparty Interaction (AMI) corpus summarization segmentation multiparty meetings 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Hames M, Dielmann A, Gatica-Perez D, Reiter S, Renals S, Rigoll G, Zhang D 2006 Multimodal integration for meeting group action segmentation and recognition, In S Renals, S Bengio (eds), Proc. MLMI ’05, LNCS, vol. 3869. Berlin, Heidelberg: Springer-Verlag, pp 52–63Google Scholar
  2. Anderson A, Bader M, Bard E, Boyle E, Doherty G, Garrod S, Isard S, Kowtko J, McAllister J, Miller J, et al 1991 The HCRC map task corpus, Lang. Speech 34(4): 351–366Google Scholar
  3. Ba S O, Odobez J M 2008 Multi-party focus of attention recognition in meetings from head pose and multimodal contextual cues, In Proc. IEEE ICASSP, pp 2221–2224Google Scholar
  4. Bahl L, Brown P, de Souza P, Mercer R 1986 Maximum mutual information estimation of hidden markov model parameters for speech recognition, In Proc IEEE ICASSP, pp 49–52Google Scholar
  5. Bales R F 1951 Interaction process analysis (Cambridge MA, USA: Addison Wesley)Google Scholar
  6. Bulyko I, Ostendorf M, Siu M, Ng T, Stolcke A, Cetin O 2007 Web resources for language modeling in conversational speech recognition, ACM Trans. Speech Lang. Process. 5(1): 1–25CrossRefGoogle Scholar
  7. Carletta J, Evert S, Heid U, Kilgour J 2005 The NITE XML toolkit: Data model and query language, Lang. Resour. Evaluation 39(4): 313–334CrossRefGoogle Scholar
  8. Carletta J, Evert S, Heid U, Kilgour J, Robertson J, Voormann H 2003 The NITE XML Toolkit: flexible annotation for multimodal language data, Behav. Res. Meth. Instrum. Comput. 35(3): 353–363CrossRefGoogle Scholar
  9. Chen S F, Kingsbury B, Mangu L, Povey D, Saon G, Soltau H, Zweig G 2006 Advances in speech transcription at IBM under the DARPA EARS program. IEEE Trans. Audio Speech Lang. Process. 14(5): 1596–1608CrossRefGoogle Scholar
  10. Cohen J, Kamm T, Andreou A 1995 Vocal tract normalization in speech recognition: compensating for systematic speaker variability, J. Acoust. Soc. Am. 97(5, Pt. 2): 3246–3247CrossRefGoogle Scholar
  11. Cutler R, Rui Y, Gupta A, Cadiz J, Tashev I, He L, Colburn A, Zhang Z, Liu Z, Silverberg S 2002 Distributed meetings: a meeting capture and broadcasting system. In Proc. ACM Multimedia, pp 503–512Google Scholar
  12. Dielmann A, Renals S 2007 Automatic meeting segmentation using dynamic Bayesian networks, IEEE Trans. Multimedia 9(1): 25–36CrossRefGoogle Scholar
  13. Digalakis V V, Rtischev D, Neumeyer L G 1995 Speaker adaptation using constrained estimation of Gaussian mixtures, IEEE Trans. Speech Audio Process. 3(5): 357–366CrossRefGoogle Scholar
  14. Dines J, Vepa J, Hain T 2006 The segmentation of multi-channel meeting recordings for automatic speech recognition, In Proc. Interspeech, pp 1213–1216Google Scholar
  15. Gales M J F, Kim D Y, Woodland P C, Chan H Y, Mrva D, Sinha R, Tranter S E 2006 Progress in the CU-HTK broadcast news transcription system, IEEE Trans. Audio Speech Lang. Process. 14(5): 1513– 1525CrossRefGoogle Scholar
  16. Gales M J F, Young S J 2007 The application of hidden Markov models in speech recognition, Foundations Trends Signal Process. 1(3): 195–304MATHCrossRefGoogle Scholar
  17. Garau G, Renals S 2008 Combining spectral representations for large vocabulary continuous speech recognition, IEEE Trans. Audio Speech Lang. Process. 16(3): 508–518CrossRefGoogle Scholar
  18. Garner P, Dines J, Hain T, El Hannani A, Karafiat M, Korchagin D, Lincoln M, Wan V, Zhang L 2009 Real-time ASR from meetings, In Proc. Interspeech, pp 2119–2122Google Scholar
  19. Gatica-Perez D, Lathoud G, Odobez J M, McCowan I 2007 Audio-visual probabilistic tracking of multiple speakers in meetings, IEEE Trans. Audio Speech Lang. Process. 15(2): 601–616CrossRefGoogle Scholar
  20. Germesin S, Wilson T 2009 Agreement detection in multiparty conversation, In Proc ICMI-MLMI, pp 7–14Google Scholar
  21. Godfrey J J, Holliman E C, McDaniel J 1992 SWITCHBOARD: Telephone speech corpus for research and development, In Proc. IEEE ICASSP, pp 517–520Google Scholar
  22. Grezl F, Karafiat M, Kontar S, Cernocky J 2007 Probabilistic and bottle-neck features for LVCSR of meetings, In Proc IEEE ICASSP, pp IV-757–IV-760Google Scholar
  23. Hain T, Woodland P C, Niesler T R, Whittaker E W D 1999 The 1998 HTK system for transcription of conversational telephone speech, In Proc IEEE ICASSP, pp 57–60Google Scholar
  24. Hain T, Dines J, Garau G, Karafiat M, Moore D, Wan V, Ordelman R, Renals S 2005 Transcription of conference room meetings: an investigation, In Proc. Interspeech ’05, pp 1661–1664Google Scholar
  25. Hain T, Burget L, Dines J, Garau G, Karafiat M, Lincoln M, Vepa J, Wan V 2007 The AMI system for the transcription of speech in meetings, In Proc. IEEE ICASSP, pp IV-357–IV-360Google Scholar
  26. Huang S, Renals S 2008 Unsupervised language model adaptation based on topic and role information in multiparty meetings, In Proc. Interspeech, pp 833–836Google Scholar
  27. Janin A, Baron D, Edwards J, Ellis D, Gelbart D, Morgan N, Peskin B, Pfau T, Shriberg E, Stolcke A, Wooters C 2003 The ICSI meeting corpus, In Proc. IEEE ICASSP, pp I-364–I-367Google Scholar
  28. Kazman R, Al-Halimi R, Hunt W, Mantei M 1996 Four paradigms for indexing video conferences, IEEE Multimedia 3(1): 63–73CrossRefGoogle Scholar
  29. Kilgour J, Carletta J, Renals S 2010 The Ambient Spotlight: Queryless desktop search from meeting speech, In Proc ACM Multimedia 2010 Workshop SSCS 2010. doi:10.1145/1878101.1878112Google Scholar
  30. Kumar N, Andreou A G 1998 Heteroscedastic discriminant analysis and reduced rank HMMs for improved recognition, Speech Commun. 26: 283–297CrossRefGoogle Scholar
  31. Lee D, Erol B, Graham J 2002 Portable meeting recorder, ACM Multimedia, pp 493–502Google Scholar
  32. Leggetter C J, Woodland P C 1995 Maximum likelihood linear regression for speaker adaptation of continuous density hidden Markov models, Comput. Speech Lang. 9(2): 171–185CrossRefGoogle Scholar
  33. Lin C, Hovy E 2003 Automatic evaluation of summaries using n-gram co-occurrence statistics, In Proc. NAACL/HLT, pp 71–78Google Scholar
  34. Liu F, Liu Y 2008 Correlation between rouge and human evaluation of extractive meeting summaries, In Proc. ACL, pp 201–204Google Scholar
  35. McGrath J E 1991 Time, interaction, and performance (TIP): A theory of groups, Small Group Res. 22(2): 147MathSciNetCrossRefGoogle Scholar
  36. Morgan N, Baron D, Bhagat S, Carvey H, Dhillon R, Edwards J, Gelbart D, Janin A, Krupski A, Peskin B, Pfau T, Shriberg E, Stolcke A, Wooters C 2003 Meetings about meetings: research at ICSI on speech in multiparty conversations, In Proc. IEEE ICASSP, pp IV-740–IV-743Google Scholar
  37. Murray G, Kleinbauer T, Poller P, Becker T, Renals S, Kilgour J 2009 Extrinsic summarization evaluation: A decision audit task, ACM Trans. Speech Lang. Process. 6(2): 1–29CrossRefGoogle Scholar
  38. Murray G, Renals S, Moore J, Carletta J 2006 Incorporating speaker and discourse features into speech summarization, In Proc NAACL, pp 367–374Google Scholar
  39. Nadas A 1983 A decision theoretic formulation of a training problem in speech recognition and a comparison of training by unconditional versus conditional maximum likelihood, IEEE Trans. Acoust. Speech Signal Process. 31(4): 814–817CrossRefGoogle Scholar
  40. Pentland A 2008 Honest signals: how they shape our world (Cambridge, MA: The MIT Press)Google Scholar
  41. Popescu-Belis A, Boertjes E, Kilgour J, Poller P, Castronovo S, Wilson T, Jaimes A, Carletta J 2008 The AMIDA automatic content linking device: Just-in-time document retrieval in meetings, In Machine Learning for Multimodal Interaction, Lecture Notes in Computer Science, vol. 5237/2008, pp 272–283. Berlin, Heidelberg: Springer, pp 272–283Google Scholar
  42. Poppe R, Poel M 2008 Discriminative human action recognition using pairwise CSP classifiers, In IEEE FGR, pp 1–6Google Scholar
  43. Povey D, Woodland P C 2002 Minimum phone error and i-smoothing for improved discriminative training, In Proc IEEE ICASSP, pp I-105–I-108Google Scholar
  44. Renals S, Hain T 2010 Speech recognition, In A Clark, C Fox, S Lappin (eds), Handbook of computational linguistics and natural language processing (Chichester: Wiley Blackwell)Google Scholar
  45. Roy D M, Luz S 1999 Audio meeting history tool: Interactive graphical user-support for virtual audio meetings, In Proc. ESCA Workshop on Accessing Information in Spoken Audio, pp 107–110Google Scholar
  46. Stasser G, Taylor L 1991 Speaking turns in face-to-face discussions, J. Personality Social Psychol. 60(5): 675–684CrossRefGoogle Scholar
  47. Uchihashi S, Foote J, Girgensohn A, Boreczky J 1999 Video manga: generating semantically meaningful video summaries, In Proc. ACM Multimedia, pp 383–392Google Scholar
  48. Waibel A, Schultz T, Bett M, Denecke M, Malkin R, Rogina I, Stiefelhagen R, Yang J 2003 SMaRT: the smart meeting room task at ISL, In Proc IEEE ICASSP, pp IV-752–IV-755Google Scholar
  49. Wan V, Hain T 2006 Strategies for language model web-data collection, In Proc IEEE ICASSP, pp 1069–1072Google Scholar
  50. Wilson T, Raaijmakers S 2008, Comparing word, character, and phoneme n-grams for subjective utterance recognition, In Proc. Interspeech, pp 1614–1617Google Scholar
  51. Wölfel M, McDonough J 2009, Distant speech recognition (Chichester: Wiley)Google Scholar
  52. Woodland P C, Povey D 2002 Large scale discriminative training of hidden Markov models for speech recognition, Comput. Speech Lang. 16(1): 25–47CrossRefGoogle Scholar
  53. Wooters C, Huijbregts M 2008 The ICSI RT07s speaker diarization system, In Multimodal Technologies for Perception of Humans, LNCS, no. 4625. Berlin, Heidelberg: Springer, pp 509–519Google Scholar
  54. Wrigley S, Brown G, Wan V, Renals S 2005 Speech and crosstalk detection in multichannel audio, IEEE Trans. Speech Audio Process. 13(1): 84–91CrossRefGoogle Scholar
  55. Yong R, Gupta A, Cadiz J 2001 Viewing meetings captured by an omni-directional camera, Proc. ACM CHI, pp 450–457Google Scholar
  56. Zechner K 2002 Automatic summarization of open-domain multiparty dialogues in diverse genres, Comput. Linguistics 28(4): 447–485CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2011

Authors and Affiliations

  1. 1.The Centre for Speech Technology ResearchUniversity of EdinburghEdinburghUK

Personalised recommendations