## Abstract

Let *M* be a closed hypersurface in \({\mathbb {R}}^{n}\) and \(\Omega \) be a bounded domain such that \(M= \partial \Omega \). In this article, we obtain an upper bound for the first nonzero eigenvalue of the following problems:

- (1)
*Closed eigenvalue problem*:$$\begin{aligned} \Delta _p u = \lambda _{p} \ |u|^{p-2} \ u \quad \text{ on } {M}. \end{aligned}$$ - (2)
*Steklov eigenvalue problem*:$$\begin{aligned} {\begin{array}{ll} \Delta _{p}u = 0 &{} \text{ in } \Omega ,\\ |\nabla u|^{p-2} \frac{\partial u}{\partial \nu } = \mu _{p} \ |u|^{p-2} \ u &{} \text{ on } M . \end{array}} \end{aligned}$$

These bounds are given in terms of the first nonzero eigenvalue of the usual Laplacian on the geodesic ball of the same volume as of \(\Omega \).

This is a preview of subscription content, log in to check access.

## References

- 1.
Binoy R and Santhanam G, Sharp upper bound and a comparison theorem for the first nonzero Steklov eigenvalue,

*J. Ramanujan Math. Soc.***29(2)**(2014) 133–154 - 2.
Bleecker D and Weiner J, Extrinsic bounds on \(\lambda _1\) of \(\Delta \) on a compact manifold,

*Comment. Math. Helv.***51**(1976) 601–609 - 3.
Chen H and Wei G, Reilly-type inequalities for \(p\)-Laplacian on submanifolds in space forms, arXiv:1806.09061 (2018)

- 4.
Du F and Mao J, Reilly-type inequalities for \(p\)-Laplacian on compact Riemannian manifolds,

*Frontiers of Mathematics in China***10(3)**(2015) 583–594 - 5.
Escobar J F, The geometry of the first nonzero Stekloff eigenvalue,

*J. Funct. Anal.***150(2)**(1997) 544–556 - 6.
Escobar J F, An isoperimetric inequality and the first Steklov eigenvalue,

*J. Funct. Anal.***165(1)**(1999) 101–116 - 7.
Escobar J F, A comparison theorem for the first nonzero Steklov eigenvalue,

*J. Funct. Anal.***178(1)**(2000) 143–155 - 8.
Grosjean J F, Upper bounds for the first eigenvalue of the Laplacian on compact submanifolds,

*Pacific. J. Math.***206**(2002) 93–112 - 9.
Heintze E, Extrinsic upper bounds for \(\lambda _1\),

*Math. Ann.***280**(1988) 389–402 - 10.
Payne L E, Some isoperimetric inequalities for Harmonic functions,

*SIAM J. Math. Anal.***1**(1970) 354–359 - 11.
Reilly R, On the first eigenvalue of the Laplacian for compact submanifold of Euclidean space,

*Comment. Math. Helv.***52**(1977) 525–533 - 12.
Santhanam G, A sharp upper bound for the first eigenvalue of the Laplacian of compact hypersurfaces in rank-\(1\) symmetric spaces,

*Proc. Indian Acad. Sci. (Math. Sci.)***117(3)**(2007) 307–315 - 13.
Santhanam G, Isoperimetric upper bounds for the first eigenvalues,

*Proc. Indian Acad. Sci. (Math. Sci.)***122(3)**(2012) 375–384 - 14.
Torné O, Steklov problem with an indefinite weight for the \(p\)-Laplacian,

*Electronic J. Differ. Equ.***2005(87)**(2005) 1–8 - 15.
Weinstock R, Inequalities for a classical eigenvalue problem,

*Rational Mech. Anal.***3**(1954) 745–753

## Acknowledgements

The author would like to thank Prof. G. Santhanam for discussions and many helpful comments on the manuscript. She also wishes to thank Prof. Bruno Colbois for pointing out a mistake in Theorem 1 in the original manuscript.

## Author information

## Additional information

Communicating Editor: S Kesavan

## Rights and permissions

## About this article

### Cite this article

Verma, S. Upper bound for the first nonzero eigenvalue related to the *p*-Laplacian.
*Proc Math Sci* **130, **21 (2020). https://doi.org/10.1007/s12044-019-0529-1

Received:

Accepted:

Published:

### Keywords

*p*-Laplacian- closed eigenvalue problem
- Steklov eigenvalue problem
- center-of-mass

### 2010 Mathematics Subject Classification

- 35P15
- 58J50