Balancing non-Wieferich primes in arithmetic progressions

  • Utkal Keshari Dutta
  • Bijan Kumar Patel
  • Prasanta Kumar RayEmail author


A prime is called a balancing non-Wieferich prime if it satisfies \(B_{p - \genfrac(){}{}{8}{p}} \not \equiv 0\pmod {p^{2}},\) where \(\genfrac(){}{}{8}{p}\) and \(B_n\) denote the Jacobi symbol and the n-th balancing number respectively. For any positive integers \(k > 2\) and \(n > 1\), there are \(\gg \log x / \log \log x\) balancing non-Wieferich primes \(p \le x\) such that \(p \equiv 1 \pmod {k}\) under the assumption of the abc conjecture for the number field \(\mathbb {Q}(\sqrt{2})\) (Proc. Japan Acad. Ser. A 92 (2016) 112–116). In this paper, for any fixed M, the lower bound \(\log x / \log \log x\) is improved to \((\log x/ \log \log x)(\log \log \log x)^{M}\).


Balancing numbers Wieferich primes arithmetic progressions abc conjecture 

2010 Mathematics Subject Classification

11B25 11B39 11B41 


  1. 1.
    Behera A and Panda G K, On the square roots of triangular numbers, Fibonacci Quart. 37 (1999) 98–105MathSciNetzbMATHGoogle Scholar
  2. 2.
    Chen Y and Ding Y, Non-Wieferich primes in arithmetic progressions, Proc. Am. Math. Soc. 145(5) (2017) 1833–1836MathSciNetCrossRefGoogle Scholar
  3. 3.
    Graves H and Ram Murty M, The \(abc\) conjecture and non-Wieferich primes in arithmetic progressions, J. Number Theory 133(6) (2013) 1809–1813MathSciNetCrossRefGoogle Scholar
  4. 4.
    Hardy G H and Wright E M, An introduction to the theory of numbers, 5th ed. (1979) (UK: The Clarendon Press, New York: Oxford University Press)Google Scholar
  5. 5.
    Panda G K and Rout S S, Periodicity of balancing numbers, Acta Math. Hung. 143(2) (2014) 274–286MathSciNetCrossRefGoogle Scholar
  6. 6.
    Panda G K, Some fascinating properties of balancing numbers, Congr. Numer. 194 (2009) 185–189MathSciNetzbMATHGoogle Scholar
  7. 7.
    Rout S, Balancing non-Wieferich primes in arithmetic progression and \(abc\) conjecture, Proc. Japan Acad. Ser. A 92 (2016) 112–116MathSciNetCrossRefGoogle Scholar
  8. 8.
    Vojta P, Diophantine approximations and value distribution theory, Lecture Notes in Mathematics, 1239 (1987) (Berlin: Springer)Google Scholar
  9. 9.
    Wieferich A, Zum letzten Fermatschen theorem (German), J. Reine Angew. Math. 136 (1909) 293–302MathSciNetzbMATHGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • Utkal Keshari Dutta
    • 1
  • Bijan Kumar Patel
    • 2
  • Prasanta Kumar Ray
    • 1
    Email author
  1. 1.Sambalpur UniversityBurlaIndia
  2. 2.International Institute of Information TechnologyBhubaneswarIndia

Personalised recommendations