Advertisement

A constructive approach to the finite wavelet frames over prime fields

  • Asghar Rahimi
  • Niloufar Seddighi
Article

Abstract

In this article, we present a constructive method for computing the frame coefficients of finite wavelet frames over prime fields using tools from computational harmonic analysis and group theory.

Keywords

Finite wavelet frames finite wavelet group prime fields 

2010 Mathematics Subject Classification

Primary: 42C15 42C40 65T60 Secondary: 30E05 30E10 

Notes

Acknowledgements

Some of the results were obtained during the second author’s appointment from the NuHAG group at the University of Vienna. The authors would like to thank Prof. Hans G. Feichtinger for his valuable comments and the group for their hospitality.

References

  1. 1.
    Arefijamaal A A and Kamyabi-Gol R A, On the square integrability of quasi regular representation on semidirect product groups, J. Geom. Anal.19(3) (2009) 541–552MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Arefijamaal A A and Kamyabi-Gol R, On construction of coherent states associated with semidirect products, Int. J. Wavelets Multiresolut. Inf. Process.6(5) (2008) 749–759MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Arefijamaal A A and Zekaee E, Signal processing by alternate dual Gabor frames, Appl. Comput. Harmon. Anal.35 (2013) 535–540MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Arefijamaal A A and Zekaee E, Image processing by alternate dual Gabor frames, Bull. Iranian Math. Soc.42(6) (2016) 1305–1314MathSciNetMATHGoogle Scholar
  5. 5.
    Balazs P, Frames and finite dimensionality: frame transformation, classification and algorithms, Appl. Math. Sci.2(43) (2008) 2131–2144MathSciNetMATHGoogle Scholar
  6. 6.
    Caire G, Grossman R L and Vincent Poor H, Wavelet transforms associated with finite cyclic groups, IEEE Trans. Inform. Th.39(4) (1993) 1157–1166MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Casazza P and Kutyniok G, Finite Frames, Theory and Applications, Applied and Numerical Harmonic Analysis (2013) (Boston: Birkhäuser)Google Scholar
  8. 8.
    Christensen O and Rahimi A, Frame properties of wave packet systems in \(L^2({\mathbb{R}}^{d})\), Adv. Comput. Math.29(2) (2008) 101–111MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Daubechies I, Ten Lectures on Wavelets (1992) (Philadelphia, PA: SIAM)Google Scholar
  10. 10.
    Duffin R J and Schaeffer A C, A class of nonharmonic Fourier series, Trans. Amer. Math. Sci.72 (1952) 341–366MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Fekri F, Mersereau R M and Schafer R W, Theory of wavelet transform over finite fields, IEEE3 (1999) 1213–1216Google Scholar
  12. 12.
    Flornes K, Grossmann A, Holschneider M and Torrésani B, Wavelets on discrete fields, Appl. Comput. Harmon. Anal.1 (1994) 137–146MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Führ H, Abstract Harmonic Analysis of Continuous Wavelet Transforms (2005) (Springer-Verlag)Google Scholar
  14. 14.
    Ghaani Farashahi A, Structure of finite wavelet frames over prime fields, Bull. Iranian Math. Soc.43(1) (2017) 109–120MathSciNetMATHGoogle Scholar
  15. 15.
    Ghaani Farashahi A, Wave packet transform over finite fields, Electron. J. Linear Algebra, 30 (2015) 507–529MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Ghaani Farashahi A, Wave packet transforms over finite cyclic groups, Linear Algebra Appl.489 (2016) 75–92MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Ghaani Farashahi A, Cyclic wavelet systems in prime dimensional linear vector spaces, Wavelets and Linear Algebra2(1) (2015) 11–24MATHGoogle Scholar
  18. 18.
    Ghaani Farashahi A, Cyclic wave packet transform on finite Abelian groups of prime order, Int. J. Wavelets Multiresolut. Inf. Process.12(6) (2014) Article ID 1450041, 14 pagesGoogle Scholar
  19. 19.
    Ghaani Farashahi A, Continuous partial Gabor transform for semi-direct product of locally compact groups, Bull. Malays. Math. Sci. Soc.38(2) (2015) 779–803MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Ghaani Farashahi A and Kamyabi-Gol R, Gabor transform for a class of non-abelian groups, Bull. Belg. Math. Soc. Simon Stevin19(4) (2012) 683–701MathSciNetMATHGoogle Scholar
  21. 21.
    Ghaani Farashahi A and Mohammad-Pour M, A unified theoretical harmonic analysis approach to the cyclic wavelet transform (CWT) for periodic signals of prime dimensions, Sahand Commun. Math. Anal.1(2) (2014) 1–17MATHGoogle Scholar
  22. 22.
    Hardy G H and Wright E M, An Introduction to the Theory of Numbers (1979) (New York: Oxford Univ. Press)Google Scholar
  23. 23.
    Johnston C P, On the pseudodilation representations of flornes, grossmann, holschneider, and torrésani, J. Fourier Anal. Appl.3(4) (1997) 377–385MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Mullen G L and Panario D, Handbook of Finite Fields, Series: Discrete Mathematics and Its Applications (2013) (Chapman and Hall/CRC)Google Scholar
  25. 25.
    Pfander G, Gabor frames in finite dimensions, in: Finite Frames, Applied and Numerical Harmonic Analysis, edited by G E Pfander, P G Casazza and G Kutyniok (2013) (New York: Birkhäuser/Springer) pp. 193–239Google Scholar
  26. 26.
    Ramakrishnan D and Valenza R J, Fourier Analysis on Number Fields (1999) (New York: Springer-Verlag)Google Scholar
  27. 27.
    Riesel H, Prime Numbers and Computer Methods for Factorization, second edition (1994) (Boston: Birkhauser)CrossRefMATHGoogle Scholar
  28. 28.
    Sarkar S and Vincent Poor H, Cyclic wavelet transforms for arbitrary finite data lengths, Signal Processing80 (2000) 2541–2552CrossRefMATHGoogle Scholar
  29. 29.
    Strang G and Nguyen T, Wavelets and Filter Banks (1996) (Wellesley, MA: Wellesley-Cambridge PressGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of MaraghehMaraghehIran

Personalised recommendations