Proceedings - Mathematical Sciences

, Volume 121, Issue 2, pp 155–164 | Cite as

Fusion frames and G-frames in Banach spaces



Fusion frames and g-frames in Hilbert spaces are generalizations of frames, and frames were extended to Banach spaces. In this article we introduce fusion frames, g-frames, Banach g-frames in Banach spaces and we show that they share many useful properties with their corresponding notions in Hilbert spaces. We also show that g-frames, fusion frames and Banach g-frames are stable under small perturbations and invertible operators.


Fusion frames; g-frames; Banach g-frames; perturbation. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Asgari M S and Khosravi A, Frames and bases of subspaces in Hilbert spaces, J. Math. Anal. Appl. 308 (2005) 541–553MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Casazza P G, Christensen O and Stoeva D T, Frame expansions in separable Banach spaces, J. Math. Anal. Appl. 307 (2005) 710–723MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Casazza P G, Han D and Larson D, Frames for Banach spaces, The functional and harmonic analysis of wavelets and frames (San Antonio, TX, 1999), pp. 149–182, Contemp. Math. 247 (Amer. Math. Soc., Providence, RI) (1999)Google Scholar
  4. [4]
    Casazza P G and Kutyniok G, Frames of subspaces, Wavelets, frames and operator theory, pp. 87–113, Contemp. Math. 345 (Amer. Math. Soc., Providence, RI) (2004)Google Scholar
  5. [5]
    Casazza P G and Kutyniok G, Robustness of fusion frames under erasures of subspaces and of local frame vectors, Radon transforms, geometry, and wavelets, pp. 149–160, Contemp. Math. 464 (Amer. Math. Soc., Providence, RI) (2008)Google Scholar
  6. [6]
    Casazza P G, Kutyniok G and Li S, Fusion frames and distributed processing, Appl. Comput. Harmon. Anal. 25 (2008) 114–132MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Casazza P G, Kutyniok G and Rozell C J, Modeling sensor networks with fusion frames, Wavelets XII (San Diego, CA, 2007), 67011M-1–67011M-11, SPIE Proc. 6701 (SPIE, Bellingham, WA) (2007)Google Scholar
  8. [8]
    Christensen O, Frames and bases, An introductory course (Boston: Birkhauser) (2008)zbMATHGoogle Scholar
  9. [9]
    Christensen O and Heil C, Perturbations of Banach frames and atomic decompositions, Math. Nachr. 185 (1997) 33–47MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    Daubechies I, Grossmann A and Meyar Y, Painless nonorthogonal expansions, J. Math. Phys. 27 (1986) 1271–1283MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    Duffin R G and Schaeffer A C, A class of nonharmonic Fourier series, Trans. Am. Math. Soc. 72 (1952) 341–366MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    Gröchenig K, Describing funtions: Atomic decompositions versus frames, Monatsh. Math. 112 (1991) 1–41MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    Khosravi A and Khosravi B, Frames and bases in tensor products of Hilbert spaces and Hilbert C *-modules, Proc. Indian Acad. Sci. (Math. Sci.) 117 (2007) 1–12MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    Khosravi A and Khosravi B, Fusion frames and g-frames in Hilbert C *-modules, Int. J. Wavelet, Multiresolution and Information Processing 6 (2008) 433–446MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    Khosravi A and Musazadeh K, Fusion frames and g-frames, J. Math. Anal. Appl. 342 (2008) 1068–1083MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    Sun W, G-frame and G-Riesz bases, J. Math. Anal. Appl. 322 (2006) 437–452MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Indian Academy of Sciences 2011

Authors and Affiliations

  1. 1.Faculty of Mathematical Sciences and ComputerTarbiat Moallem UniversityTehranIran
  2. 2.Department of Pure Mathematics, Faculty of Mathematics and Computer ScienceAmirkabir University of Technology (Tehran Polytechnic)TehranIran

Personalised recommendations