Advertisement

Proceedings - Mathematical Sciences

, Volume 119, Issue 4, pp 431–452 | Cite as

Cohomology with coefficients for operadic coalgebras

  • Anita MajumdarEmail author
  • Donald Yau
Article
  • 46 Downloads

Abstract

Corepresentations of a coalgebra over a quadratic operad are defined, and various characterizations of them are given. Cohomology of such an operadic coalgebra with coefficients in a corepresentation is then studied.

Keywords

Quadratic operad homology cohomology coalgebra 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Balavoine D, Homology and cohomology with coefficients, of an algebra over a quadratic operad, J. Pure Appl. Algebra 132 (1998) 221–258zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Balavoine D, Deformations of algebras over a quadratic operad, Contemp. Math. 202 (1997) 207–234MathSciNetGoogle Scholar
  3. [3]
    Cartan H and Eilenberg S, Homological Algebra (Princeton Univ. Press) (1956)Google Scholar
  4. [4]
    Doi Y, Homological coalgebra, J. Math. Soc. Japan 33 (1981) 31–50zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Fox T and Markl M, Distributive laws, bialgebras, and cohomology, Contemp. Math. 202 (1997) 167–205MathSciNetGoogle Scholar
  6. [6]
    Gerstenhaber M, On the deformation of rings and algebras, Ann. Math. 79 (1964) 59–103CrossRefMathSciNetGoogle Scholar
  7. [7]
    Ginzburg V and Kapranov M M, Koszul duality for operads, Duke Math. J. 76 (1994) 203–272zbMATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Harrison D K, Commutative algebras and cohomology, Trans. Amer. Math. Soc. 104 (1962) 191–204zbMATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    Hochschild G, On the cohomology groups of an associative algebra, Ann. Math. 46 (1945) 58–67CrossRefMathSciNetGoogle Scholar
  10. [10]
    Jonah D W, Cohomology of coalgebras, Mem. Amer. Math. Soc. 82 (1968)Google Scholar
  11. [11]
    Loday J-L, Cyclic homology, Grundl. Math. Wiss. Bd. 301 (Springer 1992)Google Scholar
  12. [12]
    Loday J-L, Une version non commutative des algèbres de Lie: les algèbres de Leibniz, Ens. Math. 39 (1993) 269–293zbMATHMathSciNetGoogle Scholar
  13. [13]
    Loday J-L, Cup-product for Leibniz cohomology and dual Leibniz algebras, Math. Scand. 77 (1995) 189–196zbMATHMathSciNetGoogle Scholar
  14. [14]
    Loday J-L and Pirashvili T, Universal enveloping algebras of Leibniz algebras and (co)homology, Math. Ann. 296 (1993) 139–158zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    Majumdar A and Yau D, Cohomology and duality for coalgebras over a quadratic operad, J. Generalized Lie Theory Appl. 3(2) (2009) 131–148zbMATHMathSciNetCrossRefGoogle Scholar
  16. [16]
    Markl M, Models for operads, Comm. Alg. 24 (1996) 1471–1500zbMATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    Markl M, Schnider S and Stasheff J, Operads in Algebra, Topology and Physics, Math. Surveys and Monographs 96 (Amer. Math. Soc.) (2002)Google Scholar
  18. [18]
    May J P, The geometry of iterated loop spaces, Lectures Notes in Math. 271 (Springer-Verlag) (1972)Google Scholar
  19. [19]
    May J P, Definitions: operads, algebras and modules, in: Operads: Proceedings of Renaissance Conferences (Hartford, CT/Luminy) (1995), pp. 1–7, Contemp. Math. 202, Amer. Math. Soc., (RI: Providence) (1997)Google Scholar
  20. [20]
    Parshall B and Wang J P, On bialgebra cohomology. Algebra, groups and geometry, Bull. Soc. Math. Belg. Sér. A42 (1990) 607–642MathSciNetGoogle Scholar
  21. [21]
    Weibel C, Anintroduction to homological algebra, Cambridge Studies in Advanced Math. 38 (Cambridge Univ. Press) (1997)Google Scholar

Copyright information

© Indian Academy of Sciences 2009

Authors and Affiliations

  1. 1.Department of MathematicsIndian Institute of ScienceBangaloreIndia
  2. 2.Department of MathematicsThe Ohio State University at NewarkNewarkUSA

Personalised recommendations