Advertisement

Proceedings Mathematical Sciences

, Volume 118, Issue 2, pp 227–233 | Cite as

Euler characteristic and quadrilaterals of normal surfaces

  • Tejas KalelkarEmail author
Article

Abstract

Let M be a compact 3-manifold with a triangulation τ. We give an inequality relating the Euler characteristic of a surface F normally embedded in M with the number of normal quadrilaterals in F. This gives a relation between a topological invariant of the surface and a quantity derived from its combinatorial description. Secondly, we obtain an inequality relating the number of normal triangles and normal quadrilaterals of F, that depends on the maximum number of tetrahedrons that share a vertex in τ.

Keywords

Euler characteristic normal surfaces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Haken Wolfgang, Theorie der Normalflachen, Acta Math. 105 (1961) 245–375zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Haken Wolfgang, Uber das Homoomorphieproblem der 3-Mannigfaltigkeiten. I, Math. Z. 80 (1962) 89–120zbMATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Hemion Geoffrey, The classification of knots and 3-dimensional spaces (Oxford Science Publications, Oxford University Press) (1992)Google Scholar
  4. [4]
    Jaco William and Oertel Ulrich, An algorithm to decide if a 3-manifold is a Haken manifold, Topology 23(2) (1984) 195–209zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Jaco William and Tollefson Jeffrey L, Algorithms for the complete decomposition of a closed 3-manifold, Illinois J. Math. 39(3) (1995) 358–406zbMATHMathSciNetGoogle Scholar
  6. [6]
    Jaco William, Letscher David and Rubinstein J Hyam, Algorithms for essential surfaces in 3-manifolds, Topology and Geometry: Commemorating SISTAG, Contemporary Mathematics, no. 314 (RI, Providence: Amer. Math. Soc.) (2002) 107–124Google Scholar
  7. [7]
    Kneser Hellmuth, Geschlossene Flachen in dreidimensionalen Mannigfaltigkeiten, Jahresbericht der Deut. Math Verein. 38 (1929) 248–260zbMATHGoogle Scholar
  8. [8]
    Matveev Sergei, Algorithmic Topology and Classification of 3-Manifolds (Berlin, Heidelberg: Springer-Verlag) (2003) vol. 9zbMATHGoogle Scholar
  9. [9]
    Rubinstein J Hyam, An algorithm to recognise the 3-sphere, Proceedings of the International Congress of Mathematicians (Zurich) (1994) vol. 1 (Birkhauser) (1995) pp. 601–611Google Scholar
  10. [10]
    Rubinstein J Hyam, Polyhedral minimal surfaces, Heegaard splittings and decision problems for 3-dimensional manifolds, Geometric Topology (GA: Athens) (1993) AMS/IP Stud. Adv. Math., vol. 2, Amer. Math. Soc. (1997) pp. 1–20Google Scholar
  11. [11]
    Schubert H, Bestimmung der Primfactor Zerlegung von Verkettungen, Math. Z. 76 (1961) 116–148zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Indian Academy of Sciences 2008

Authors and Affiliations

  1. 1.Stat-Math UnitIndian Statistical InstituteBangaloreIndia

Personalised recommendations