Advertisement

Pramana

, 93:89 | Cite as

Friedmann–Robertson–Walker accelerating Universe with interactive dark energy

  • G K Goswami
  • Anirudh PradhanEmail author
  • A Beesham
Article
  • 87 Downloads

Abstract

In this work, we study a cosmological model based on the cosmological principle which exhibits a transition from deceleration to acceleration. We consider baryonic matter dark energy (DE), and ‘curvature’ energy. Both baryonic matter and DE have variable equations of state. It is assumed that DE interacts with and transforms energy to baryonic matter. A Friedmann–Robertson–Walker (FRW) Universe filled with two fluids has been discussed. The model is shown to satisfy current observational constraints. This Universe is at present in a phantom phase after passing through a quintessence phase in the past. Various cosmological parameters regarding the accelerating Universe have been presented. The evolution of DE, Hubble, deceleration parameters, etc. have been described with the aid of figures. Our theoretical results have been compared with the SNe Ia related Union 2.1 compilation 581 data and we have observed that our derived model is in good agreement with the current observational constraints. We have also explored the physical properties of the model.

Keywords

Friedmann–Robertson–Walker Universe SNe Ia data observational parameters accelerating Universe 

PACS Nos

98.80.Jk 95.30.Sf 

Notes

Acknowledgements

G K Goswami and A Pradhan sincerely acknowledge the Inter-University Centre for Astronomy and Astrophysics (IUCAA), Pune, India for providing facilities where part of this work was completed during a visit. The authors also thank the editor and the anonymous referee for valuable comments which have improved the paper to the present form.

References

  1. 1.
    S Perlmutter et al, Nature 391, 51 (1998)ADSGoogle Scholar
  2. 2.
    S Perlmutter et al, Astrophys. J. 517, 5 (1999)Google Scholar
  3. 3.
    A G Riess et al, Astron. J. 116, 1009 (1998)ADSGoogle Scholar
  4. 4.
    J L Tonry et al, Astrophys. J. 594, 1 (2003)ADSGoogle Scholar
  5. 5.
    A Clocchiatti et al, Astrophys. J. 642, 1 (2006)ADSGoogle Scholar
  6. 6.
    P de Bernardis et al, Nature 404, 955 (2000)ADSGoogle Scholar
  7. 7.
    S Hanany et al, Astrophys. J. 493, L53 (2000)Google Scholar
  8. 8.
    D N Spergel et al, Astrophys. J. Suppl. 148, 175 (2003)ADSGoogle Scholar
  9. 9.
    M Tegmark et al, Phys. Rev. D 69, 103501 (2004)ADSGoogle Scholar
  10. 10.
    U Seljak et al, Phys. Rev. D 71, 103515 (2005)ADSGoogle Scholar
  11. 11.
    J K Adelman-McCarthy et al, Astrophys. J. Suppl. 162, 38 (2006)ADSGoogle Scholar
  12. 12.
    C L Bennett et al, Astrophys. J. Suppl. 148, 1 (2003)ADSGoogle Scholar
  13. 13.
    S W Allen et al, Mon. Not. R. Astron. Soc. 353, 457 (2004)ADSGoogle Scholar
  14. 14.
    N Suzuki et al, Astrophys. J. 746, 85 (2011)ADSGoogle Scholar
  15. 15.
    T Delubac et al, Astron. Astrophys. 574, A59 (2015)Google Scholar
  16. 16.
    C Blake et al, Mon. Not. R. Astron. Soc. 425, 405 (2012)ADSGoogle Scholar
  17. 17.
    P A R Ade et al, Astron. Astrophys. 594, A14 (2016)Google Scholar
  18. 18.
    E J Copeland et al, Int. J. Mod. Phys. D 15, 1753 (2006)ADSGoogle Scholar
  19. 19.
    Ø Grøn and S Hervik, Einstein’s general theory of relativity with modern applications in cosmology (Springer Publication, Berlin, 2007)zbMATHGoogle Scholar
  20. 20.
    S Weinberg, Rev. Mod. Phys. 61, 1 (1989)ADSGoogle Scholar
  21. 21.
    S M Carroll and M Hoffman, Phys. Rev. D 68, 023509 (2003)ADSGoogle Scholar
  22. 22.
    D Huterer and M S Turner, Phys. Rev. D 64, 123527 (2001)ADSGoogle Scholar
  23. 23.
    J Weller and A Albrecht, Phys. Rev. D 65, 103512 (2002)ADSGoogle Scholar
  24. 24.
    D Polarski and M Chevallier, Int. J. Mod. Phys. D 10, 213 (2001)ADSGoogle Scholar
  25. 25.
    E V Linder, Phys. Rev. Lett. 90, 91301 (2003)ADSGoogle Scholar
  26. 26.
    T Padmanabhan and T P Roy Choudhury, Mon. Not. R. Astron. Soc. 344, 823 (2003)ADSGoogle Scholar
  27. 27.
    P S Corasaniti et al, Phys. Rev. D 70, 083006 (2004)ADSGoogle Scholar
  28. 28.
    U Alam, J. Cosmol. Astropart. Phys.0406, 008(2004)ADSGoogle Scholar
  29. 29.
    U Alam et al, Mon. Not. R. Astron. Soc. 344, 1057 (2003)ADSGoogle Scholar
  30. 30.
    A G Riess et al, Astrophys. J. 607, 665 (2004)ADSGoogle Scholar
  31. 31.
    P Astier et al, Astron. Astrophys. 447, 31 (2006)ADSGoogle Scholar
  32. 32.
    D J Eisentein et al, Astrophys. J. 633, 560 (2005)ADSGoogle Scholar
  33. 33.
    C J MacTavish et al, Astrophys. J. 647, 799 (2006)ADSGoogle Scholar
  34. 34.
    E Komatsu et al, Astrophys. J. Suppl. Ser. 180, 330 (2009)ADSGoogle Scholar
  35. 35.
    E Copeland, M Sami and S Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006)ADSGoogle Scholar
  36. 36.
    R K Knop et al, Astrophys. J. 598, 102 (2003)ADSGoogle Scholar
  37. 37.
    G Hinshaw et al, Astrophys. J. Suppl. 180, 225 (2009)ADSGoogle Scholar
  38. 38.
    J Sola and A Gomej-Valent, Int. J. Mod. Phys. D 24, 1541003 ( 2015)ADSGoogle Scholar
  39. 39.
    D Begue, C Stahl and S S Xue, Nucl. Phys. B 940, 312 (2019)ADSGoogle Scholar
  40. 40.
    G Risaliti and E Lusso, Nat. Astron. 3, 272 (2019)ADSGoogle Scholar
  41. 41.
    A G Riess et al, arXiv:1903.07603 [astro-ph.CO]
  42. 42.
    S S Xue, Nucl. Phys B 897, 326 (2015)ADSGoogle Scholar
  43. 43.
    E G M Ferriera, Phys. Rev. D 95, 043520 (2017)ADSGoogle Scholar
  44. 44.
    T S Koivisto, E N Saridakis and N Tamanini, J. Cosmol. Astropart. Phys. 1509, 047 (2015)ADSGoogle Scholar
  45. 45.
    S Kumar and R C Nunes, Phys. Rev. D 94, 123511 (2016)ADSGoogle Scholar
  46. 46.
    S Kumar and R C Nunes, Phys. Rev. D 96, 103511 (2017)ADSGoogle Scholar
  47. 47.
    B Wang, E Abdulla, F Atrio-Varandela and D Pavon, Rep. Prog. Phys. 79, 096901 (2016)ADSGoogle Scholar
  48. 48.
    S K Banik and K Bhuyan, Pramana – J. Phys. 88: 26 (2017)ADSGoogle Scholar
  49. 49.
    B S Choudhury, H S Mondal and D Chatterjee, Pramana – J. Phys. 90: 55 (2018)ADSGoogle Scholar
  50. 50.
    X F Zhang and H H Liu, Chin. Phys. Lett. 26, 109803 (2009)ADSGoogle Scholar
  51. 51.
    N M Liang, C J Gao and S N Zhang, Chin. Phys. Lett. 26, 069501 (2009)ADSGoogle Scholar
  52. 52.
    C Wang, Y B Wu and F Liu, Chin. Phys. Lett. 26, 029801 (2009)ADSGoogle Scholar
  53. 53.
    H Amirhashchi, A Pradhan and B Saha, Chin. Phys. Lett. 28, 039801 (2011)Google Scholar
  54. 54.
    H Amirhashchi, A Pradhan and H Zainuddin, Int. J. Theor. Phys. 50, 3529 (2011)Google Scholar
  55. 55.
    A Pradhan, H Amirhashchi and B Saha, Astrophys. Space Sci. 333, 343 (2011)ADSGoogle Scholar
  56. 56.
    B Saha, H Amirhashchi and A Pradhan, Astrophys. Space Sci. 342, 257 (2012)ADSGoogle Scholar
  57. 57.
    A Pradhan, Indian J. Phys. 88, 215 (2014)ADSGoogle Scholar
  58. 58.
    S Kumar, Astrophys. Space Sci. 332, 449 (2011)ADSGoogle Scholar
  59. 59.
    L Amendola, G Camargo Campos and R Rosenfeld, Phys. Rev. D 75, 083506 (2007)ADSGoogle Scholar
  60. 60.
    Z K Guo, N Ohta and S Tsujikawa, Phys. Rev. D 76, 023508 (2007)ADSGoogle Scholar
  61. 61.
    M S Berman, II Nuovo Cimento B 74, 1971 (1983)Google Scholar
  62. 62.
    M S Berman and F M Gomide, Gen. Relativ. Gravit. 20, 191 (1988)ADSGoogle Scholar
  63. 63.
    A Pradhan, H Amirhashi and B Saha, Int. J. Theor. Phys. 50, 2923 (2011)Google Scholar
  64. 64.
    A Pradhan, Commun. Theor. Phys. 55, 931 (2011)Google Scholar
  65. 65.
    D N Spergel et al, Astrophys. J. Suppl.170, 377 (2007)ADSGoogle Scholar
  66. 66.
    D Komatsu et al, Astrophys. J. Suppl. Ser. 180, 330 (2009)ADSGoogle Scholar
  67. 67.
    T Padmanabhan and T R Choudhury, Mon. Not. R. Astron. Soc. 244, 823 (2003)ADSGoogle Scholar
  68. 68.
    L Amendola, Mon. Not. R. Astron. Soc. 342, 221 (2003)ADSGoogle Scholar
  69. 69.
    A G Riess et al, Astrophys. J. 560, 49 (2001)ADSGoogle Scholar
  70. 70.
    Abdusattar and S R Prajapati, Astrophys. Space Sci. 335, 657 (2011)ADSGoogle Scholar
  71. 71.
    O Akarsu et al, J. Cosmol. Astropart. Phys. 01, 022 (2014)ADSMathSciNetGoogle Scholar
  72. 72.
    L. Avile′s et al, J. Phys. Conf. Ser.70, 012010 (2016)Google Scholar
  73. 73.
    S Kumar, Grav. Cosmol. 19, 284 (2013)ADSGoogle Scholar
  74. 74.
    A Pradhan and R Jaisaval, Int. J. Geom. Methods Mod. Phys. 15, 1850076 (2018)MathSciNetGoogle Scholar
  75. 75.
    C R Mahanta and N Sharma, New Astron. 57, 70 (2017)ADSGoogle Scholar
  76. 76.
    A K Yadav et al, Int. J. Theor. Phys. 54, 1671 (2015)Google Scholar
  77. 77.
    R Zia, D C Maurya and A Pradhan, Int. J. Geom. Methods Mod. Phys. 15, 1850168 (2018)MathSciNetGoogle Scholar
  78. 78.
    A K Yadav and V Bhardwaj, Res. Astron. Astrophys. 18, 64 (2016)ADSGoogle Scholar
  79. 79.
    B Mishra and S K Tripathi, Mod. Phys. A 30, 1550175 (2015)ADSGoogle Scholar
  80. 80.
    U K Sharma, R Zia and A Pradhan, J. Astrophys. Astron. 40, 2 (2019)ADSGoogle Scholar
  81. 81.
    P H R S Moraes, Astrophys. Space Sci. 352, 273(2014)ADSGoogle Scholar
  82. 82.
    P H R S Moraes, G Ribeiro and R A C Correa, Astrophys. Space Sci. 361, 227 (2016)ADSGoogle Scholar
  83. 83.
    P H R S Moraes and P K Sahoo, Eur. Phys. J. C 77, 480 (2017)ADSGoogle Scholar
  84. 84.
    S Capozziello et al, Phys. Rev. D 90, 044016 (2014)ADSGoogle Scholar
  85. 85.
    S Capozziello et al, Phys. Rev. D 91, 124037 (2015)ADSMathSciNetGoogle Scholar
  86. 86.
    O Farooq and B Ratra, Astrophys. J. 766, L7 (2013)ADSGoogle Scholar
  87. 87.
    O Farooq et al, Astrophys. J. 835, 26 (2017)ADSGoogle Scholar
  88. 88.
    W L Freedman et al, Astrophys. J. 553, 47 (2001)ADSGoogle Scholar
  89. 89.
    S H Suyu et al, Astrophys. J. 711, 201 (2010)ADSGoogle Scholar
  90. 90.
    N Jarosik et al, Astrophys. J. Suppl. 192, 14 (2010)ADSGoogle Scholar
  91. 91.
    A G Riess et al, Astrophys. J. 730, 119 (2011)ADSGoogle Scholar
  92. 92.
    F Beutler et al, Mon. Not. R. Astron. Soc. 416, 3017 (2011)ADSGoogle Scholar
  93. 93.
    S Kumar, Mon. Not. Astron. Soc. 422, 2532 (2012)ADSGoogle Scholar
  94. 94.
    C Zhang et al, Res. Astron. Astrophys. 14, 1 (2014)ADSGoogle Scholar
  95. 95.
    D Stern et al, J. Cosmol. Astropart. Phys. 1002, 008 (2010)ADSGoogle Scholar
  96. 96.
    M Moresco, Mon. Not. R. Astron. Soc. 450, L16(2015)ADSGoogle Scholar
  97. 97.
    J Simon et al, Phys. Rev. D 71, 123001 (2005)ADSGoogle Scholar
  98. 98.
    N Benitez et al, Astrophys. J. 577, L1 (2002)ADSGoogle Scholar
  99. 99.
    M Turner and A G Riess, Astrophys. J. 569, 18 (2002)ADSGoogle Scholar
  100. 100.
    A R Liddle and D H Lyth, Cosmological inflation and large-scale structure (Cambridge University Press, Cambridge, 2000)zbMATHGoogle Scholar
  101. 101.
    G K Goswami, R N Dewangan and A K Yadav, Astrophys. Space Sci. 361, 119 (2016)ADSGoogle Scholar
  102. 102.
    G K Goswami, R N Dewangan, A K Yadav and A Pradhan, Astrophys. Space Sci. 361, 47 (2016)ADSGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of MathematicsKalyan Post Graduate CollegeBhilaiIndia
  2. 2.Department of Mathematics, Institute of Applied Sciences and HumanitiesGLA UniversityMathuraIndia
  3. 3.Department of Mathematical SciencesUniversity of ZululandKwa-DlangezwaSouth Africa

Personalised recommendations