, 93:86 | Cite as

Influence of non-uniform heat source / sink on the three-dimensional magnetohydrodynamic Carreau fluid flow past a stretching surface with modified Fourier’s law

  • B Ramadevi
  • K Anantha Kumar
  • V SugunammaEmail author
  • N Sandeep


The combined influence of heat and mass transfer on the boundary layer flow of Carreau fluid across a bidirectional stretching surface has many applications such as heat exchangers, transportation, making of paper plates, fibre coating, and some metal-working procedures in engineering and industrial applications. In this paper, we present a three-dimensional (3D) numerical study on the magnetohydrodynamic (MHD) Carreau fluid flow driven by a stretching surface influenced by heat and mass transfer. This examination further sees the impacts of variable thermal conductivity, Joule heating, irregular heat source / sink and chemical reaction. The improved Fourier’s model is considered in view of the response of heat transfer. The flow equations are transformed into dimensionless equations with suitable similarity transformations. The fourth-order Runge–Kutta-based shooting method is used to resolve the converted nonlinear coupled equations. Influences of various physical aspects on the flow fields are shown through graphs and friction factor, local Nusselt and Sherwood numbers are presented in a separate table. The results predict that the fluid temperature is an escalating factor of the thermal relaxation parameter and Eckert number. Also, the rates of thermal and mass transport and the Weisenberg numbers are proportional to each other.


Magnetohydrodynamics Carreau fluid Cattaneo–Christov heat flux variable heat source / sink stretching surface 


05.70.−a 52.30.Cv 47.00 47.15.−x 


  1. 1.
    J Fourier, Analytical theory of light (Cambridge University Press, 1822)Google Scholar
  2. 2.
    C Cattaneo, Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 3, 83 (1948)Google Scholar
  3. 3.
    C I Christov, Mech. Res. Comm. 36, 481 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    J V R Reddy, V Sugunamma and N Sandeep, J. Mol. Liq. 223, 1234 (2016)CrossRefGoogle Scholar
  5. 5.
    B Ramandevi, J V R Reddy, V Sugunamma and N Sandeep, Alex. Eng. J. 57(2), 1009 (2017)CrossRefGoogle Scholar
  6. 6.
    M Irfan, M Khan and W A Khan, Res. Phys. 10, 107 (2018)Google Scholar
  7. 7.
    K Anantha Kumar, J V R Reddy, V Sugunamma and N Sandeep, Alex. Eng. J. 57(1), 435 (2018)CrossRefGoogle Scholar
  8. 8.
    K Anantha Kumar, J V R Reddy, V Sugunamma and N Sandeep, Heat Transf. Res. 50(6), 581 (2019)CrossRefGoogle Scholar
  9. 9.
    M Massoudi and I Christie, Int. J. Non-Linear Mech. 30, 681 (1995)CrossRefGoogle Scholar
  10. 10.
    A M Siddique, R Mahmood and Q K Ghori, Chaos Solitons Fractals35, 140 (2008)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    M Khan, Hashim and A S Alshomrani, PLoS ONE 11(6), e0157180 (2016)CrossRefGoogle Scholar
  12. 12.
    M Khan, M Irfan, W A Khan and A S Alshomrani, Res. Phys. 7, 2692 (2017)Google Scholar
  13. 13.
    M S Kumar, N Sandeep, B R Kumar and P A Dinesh, Alex. Eng. J. 57(3), 2093 (2018)CrossRefGoogle Scholar
  14. 14.
    R A Shah, T Abbas, M Idrees and M Ullah, Bound. Val. Prob. 2017, 94 (2017)CrossRefGoogle Scholar
  15. 15.
    L J Crane, J. Appl. Math. Phys. (ZAMP) 21, 645 (1970)CrossRefGoogle Scholar
  16. 16.
    T C Chiam, ZAMM 62, 565 (1982)ADSCrossRefGoogle Scholar
  17. 17.
    C O Chen and M I Char, J. Math. Anal. Appl. 135, 568 (1988)MathSciNetCrossRefGoogle Scholar
  18. 18.
    P G Siddheshwar and U S Mahabaleswar, Int. J. Non-Linear Mech. 40, 807 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    K Anantha Kumar, J V R Reddy, V Sugunamma and N Sandeep, Int. J. Fluid Mech. Res. 46, (2019)Google Scholar
  20. 20.
    M J Babu and N Sandeep, Adv. Powder Technol. 27(5), 2039 (2016)CrossRefGoogle Scholar
  21. 21.
    M Y Malik, M Khan and T Salahuddin, J. Appl. Mech. Tech. Phys. 58, 1033 (2017)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    N Sandeep, Adv. Powder Technol. 28(3), 865 (2017)CrossRefGoogle Scholar
  23. 23.
    M S Abel, T Jagadish and M Nandeppanavar, Int. J. Non-Linear Mech. 44, 990 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    D Pal, Commun. Nonlinear Sci. Numer. Simulat. 16, 1890 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    J V R Reddy, V Sugunamma, N Sandeep and K Anantha Kumar, Global J. Pure Appl. Math. 12(1), 247 (2016)Google Scholar
  26. 26.
    J V R Reddy, K Anantha Kumar, V Sugunamma and N Sandeep, Alex. Eng. J. 57(3), 1829 (2017)CrossRefGoogle Scholar
  27. 27.
    I L Animasaun and N Sandeep, Powder Technol. 301, 858 (2016)CrossRefGoogle Scholar
  28. 28.
    K Anantha Kumar, V Sugunamma and N Sandeep, J. Non-Equilib. Thermodyn. 43(4), 327 (2018)ADSCrossRefGoogle Scholar
  29. 29.
    I Khan, Shafquatullah, M Y Malik, A Hussian and M Khan, Res. Phys. 7, 4001 (2017)Google Scholar
  30. 30.
    B Ramadevi, J V Ramana Reddy and V Sugunamma, Int. J. Math., Eng. Manag. Sci. 3(4), 472 (2018)Google Scholar
  31. 31.
    K Anantha Kumar, J V R Reddy, V Sugunamma and N Sandeep, Multi. Mode. Mater. Struc. 14(5), 999 (2018)CrossRefGoogle Scholar
  32. 32.
    C Sulochana, G P Aswinkumar and N Sandeep, Alex. Eng. J. 57(4), 2573 (2018)CrossRefGoogle Scholar
  33. 33.
    K B Lakshmi, K Anantha Kumar, J V R Reddy and V Sugunamma, J. Nanofluids 8(1), 43 (2019)CrossRefGoogle Scholar
  34. 34.
    K Anantha Kumar, J V R Reddy, V Sugunamma and N Sandeep, Def. Diff. Forum 378, 157 (2017)CrossRefGoogle Scholar
  35. 35.
    T Hayat, I Ullah, B Ahmed and A Alsaedi, Res. Phys. 7, 2804 (2017)Google Scholar
  36. 36.
    T Hayat, R S Saif, R Ellah, T Muhammad and B Ahmad, Res. Phys. 7, 2601 (2017)Google Scholar
  37. 37.
    B Ramadevi, V Sugunamma, K Anantha Kumar and J V Ramana Reddy, Multi. Model. Mater. Struc. 15(1), 2 (2018)Google Scholar
  38. 38.
    K Anantha Kumar, V Sugunamma and N Sandeep, J. Non-Equilib. Thermodyn. 44(2), 101 (2018)Google Scholar
  39. 39.
    M M Bhatti, A Zeeshan and R Ellahi, Pramana – J. Phys. 89: 48 (2017)ADSCrossRefGoogle Scholar
  40. 40.
    M Khan, L Ahmad and M Ayaz, Pramana – J. Phys. 91: 13 (2019)ADSCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • B Ramadevi
    • 1
  • K Anantha Kumar
    • 1
  • V Sugunamma
    • 1
    Email author
  • N Sandeep
    • 2
  1. 1.Department of MathematicsSri Venkateswara UniversityTirupatiIndia
  2. 2.Department of MathematicsCentral University of KarnatakaKalaburagiIndia

Personalised recommendations