, 93:99 | Cite as

Combined effects of free convection and chemical reaction with heat–mass flux conditions: A semianalytical technique

  • Ram Prakash SharmaEmail author
  • S R Mishra


This paper discusses the effect of heat and mass flux on the natural convective laminar flow of a viscous incompressible fluid under the influence of radiation, magnetic field and Joule heating. The partial differential equations related to the problem have been changed as a set of ordinary differential equations employing non-dimensional quantities. Semianalytical approach such as the Adomian decomposition method (ADM) is employed to solve the system of ordinary differential equations. The behaviour of characterising parameters on the velocity, heat and mass transfer profiles, and the engineering quantities of interest, i.e. skin friction, heat and mass transfer rates and other indices are presented through graphs.


Magnetohydrodynamics heat and mass flux viscous dissipation Joule heating Adomian decomposition method 


05.70.–a 44.20.+b 44.35.+c 



The authors are grateful to Prof. G C Sharma, Agra University, Agra, India for his help and valuable comments during the preparation of this paper and the authors are also grateful to the learned reviewers for their constructive suggestions which largely improved the quality of this paper.


  1. 1.
    R A Henkes and W M Hoogendoorn, Int. J. Heat Mass Transf.32(1), 147 (1989)ADSGoogle Scholar
  2. 2.
    M A Seddek, Acta Mech.177, 1 (2005)Google Scholar
  3. 3.
    H S Takhar, S R Gorla and V M Soundalgekar, Int. J. Numer. Methods Heat Fluid Flow6, 77 (1996)Google Scholar
  4. 4.
    H T Lin and C M Wu, Heat Mass Transfer30, 369 (1995)ADSGoogle Scholar
  5. 5.
    A R Bestman and S K Adjepong, Astrophys. Space Sci.143(1), 73 (1998)ADSGoogle Scholar
  6. 6.
    P Ganesan and P Loganathan, J. Eng. Phys. Thermophys.75(4), 899 (2002)Google Scholar
  7. 7.
    R Muthucumaraswamy and T Kulandaivel, Forsch. Ingenieurwes.68, 101 (2003)Google Scholar
  8. 8.
    R Muthucumaraswamy and P Ganesan, Acta Mech.147, 45 (2001)Google Scholar
  9. 9.
    A J Chamkha, Int. J. Eng. Sci.42, 217 (2004)Google Scholar
  10. 10.
    S Mohammed Ibrahim and K Suneetha, J. Comput. Appl. Res. Mech. Eng.5(2), 83 (2016)Google Scholar
  11. 11.
    P Gurivi Reddy, M C Raju, B Mamatha and S V K Varma, Appl. Math. (Irvine)7, 638 (2016)Google Scholar
  12. 12.
    P L Chambré and J D Young, Phys. Fluids1, 48 (1958)ADSGoogle Scholar
  13. 13.
    T S Chen and C F Yuh, Int. J. Heat Mass Transf.23(4), 451 (1980)Google Scholar
  14. 14.
    M S Babu and P V Satyanarayana, JP J. Heat Mass Transf.3, 219 (2009)Google Scholar
  15. 15.
    B M Rao, G V Reddy and M C Raju, IOSR J. Appl. Phys.6, 22 (2013)Google Scholar
  16. 16.
    P K Rout, S N Sahoo, G C Dash and S R Mishra, Alexandria Eng. J.55(3), 2967 (2016)Google Scholar
  17. 17.
    S Jena, S R Mishra and G C Dash, Int. J. Appl. Comput. Math.25(4), 1 (2016)Google Scholar
  18. 18.
    J C Misra and S D Adhikary, Alexandria Eng. J.55(1), 287 (2016)Google Scholar
  19. 19.
    R S Tripathy, G C Dash, S R Mishra and S Baag, Alexandria Eng. J.54, 673 (2015)Google Scholar
  20. 20.
    S Ahmed, K Kalita and A J Chamkha, Ain Shams Eng. J.6, 691 (2015)Google Scholar
  21. 21.
    V M Soundalgekar, Int. J. Heat Mass Transf.15(6), 1253 (1972)Google Scholar
  22. 22.
    P M Kishore, V Rajesh and S Vijayakumar Verma, Theor. Appl. Mech.39(2), 99 (2012)ADSMathSciNetGoogle Scholar
  23. 23.
    E R G Eckert and R M Drake, Heat and mass transfer, 2nd edn (Tata McGraw-Hill, New Delhi, 1979)Google Scholar
  24. 24.
    A M Hossain, M A Alim and D A S Rees, Int. J. Heat Mass Transf.42, 181 (1999)Google Scholar
  25. 25.
    O D Makinde, Int. Commun. Heat Mass Transfer32(10), 1411 (2005)Google Scholar
  26. 26.
    P R Babu, J A Rao and S Sheri, J. Appl. Fluid Mech.7, 641 (2014)Google Scholar
  27. 27.
    K J Girish, Int. J. Sci. Eng. Technol. Res.2(4), 881 (2013)Google Scholar
  28. 28.
    P Mangathai, G V R Reddy and B R Reddy, Int. J. Adv. Comput. Math. Sci.7(1), 1 (2015)Google Scholar
  29. 29.
    M Kayalvizhi, R Kalaivanan, N Vishnu Ganesh, B Ganga and A K Abdul Hakeem, Ain Shams Eng.7, 791 (2016)Google Scholar
  30. 30.
    S R Mishra, G C Dash and M Acharya, Int. J. Heat Mass Transf.57(2), 433 (2013)Google Scholar
  31. 31.
    F M Abbasi, S A Shehzad, T Hayat, A Alsaedi and M A Obid, AIP Adv.5(3), 1 (2015)Google Scholar
  32. 32.
    E Geetha and R Muthucumaraswamy, Int. J. Adv. Sci. Technol. Eng. Manage. Sci. 2(6), 1 (2016)Google Scholar
  33. 33.
    T Hayat, I Ullah, T Muhammad, A Alsaedi and S A Shehzad, Chin. Phys. B 25(7), 1 (2016)Google Scholar
  34. 34.
    G S Seth, G K Mahato, S Sarkar and M S Ansari, Int. J. Appl. Math. Res. 1(4), 462 (2012)Google Scholar
  35. 35.
    G S Seth, S Sarkar and G K Mahato, Int. J. Heat Technol.31(1), 85 (2013)Google Scholar
  36. 36.
    G S Seth, B Kumbhakar and S Sarkar, Int. J. Heat Technol. 32(1–2), 87 (2014)Google Scholar
  37. 37.
    G S Seth, S Sarkar and R Nandkeolyar, J. Appl. Fluid Mech. 8(3), 623 (2015)Google Scholar
  38. 38.
    G S Seth, B Kumbhakar and R Sharma, J. Egypt Math. Soc. 24(3), 471 (2016)Google Scholar
  39. 39.
    G S Seth, M K Mishra and A J Chamkha, J. Nanofluids 5(4), 511 (2016)Google Scholar
  40. 40.
    S Sarkar and G S Seth, J. Aerospace Eng. 30(1), 11 (2016), Article ID: 04016081Google Scholar
  41. 41.
    C L Cogley, W G Vincenti and E S Gilles, Am. Inst. Aeronaut. Astronaut.6(3), 551 (1968)Google Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of Basic & Applied Science, National Institute of Technology Arunachal PradeshPapum PareIndia
  2. 2.Department of MathematicsSiksha ‘O’ Anusandhan Deemed to be UniversityKhandagiri, BhubaneswarIndia

Personalised recommendations