, 93:75 | Cite as

An efficient technique for a fractional-order system of equations describing the unsteady flow of a polytropic gas

  • P Veeresha
  • D G PrakashaEmail author
  • Haci Mehmet Baskonus


In the present investigation, the q-homotopy analysis transform method (q-HATM) is applied to find approximated analytical solution for the system of fractional differential equations describing the unsteady flow of a polytropic gas. Numerical simulation has been conducted to prove that the proposed technique is reliable and accurate, and the outcomes are revealed using plots and tables. The comparison between the obtained solutions and the exact solutions shows that the proposed method is efficient and effective in solving nonlinear complex problems. Moreover, the proposed algorithm controls and manipulates the obtained series solution in a huge acceptable region in an extreme manner and it provides us a simple procedure to control and adjust the convergence region of the series solution.


q-Homotopy analysis transform method polytropic gas Laplace transform 


02.60.–Cb 02.60.–x 05.45.Df 


  1. 1.
    A Singh, S Das, S H Ong and H Jafari, J. Comput. Nonlinear Dyn. 14(4), 041003 (2019)CrossRefGoogle Scholar
  2. 2.
    M Badr, A Yazdani and H Jafari, Numer. Methods Partial Differ. Equ. 34, 1459 (2018)CrossRefGoogle Scholar
  3. 3.
    D G Prakasha, P Veeresha and H M Baskonus, Fractal Fract. 3(1), (2019), CrossRefGoogle Scholar
  4. 4.
    S S Roshan, H Jafari and D Baleanu, Math. Methods Appl. Sci. 41, 9134 (2018)MathSciNetCrossRefGoogle Scholar
  5. 5.
    R W Ibrahim, H Jafari, H A Jalab and S B Hadid, Adv. Differ. Equ. (2019),
  6. 6.
    P Veeresha, D G Prakasha and D Baleanu, Mathematics 7(3), (2019), CrossRefGoogle Scholar
  7. 7.
    M A Firoozjaee, H Jafari, A Lia and D Baleanu, J. Comput. Appl. Math. 339, 367 (2018)MathSciNetCrossRefGoogle Scholar
  8. 8.
    H Jafari and S Seifi, Commun. Nonlinear Sci. 14, 2006 (2009)CrossRefGoogle Scholar
  9. 9.
    A Prakash, P Veeresha, D G Prakasha and M Goyal, Pramana – J. Phys. 93: 6 (2019),
  10. 10.
    T A Sulaiman, H M Baskonus and H Bulut, Pramana – J. Phys. 91: 58 (2018),
  11. 11.
    M Caputo, Elasticita Dissipazione (Zanichelli, Bologna, 1969)Google Scholar
  12. 12.
    K S Miller and B Ross, An introduction to fractional calculus and fractional differential equations (A Wiley, New York, 1993)zbMATHGoogle Scholar
  13. 13.
    I Podlubny, Fractional differential equations (Academic Press, New York, 1999)zbMATHGoogle Scholar
  14. 14.
    A A Kilbas, H M Srivastava and J J Trujillo, Theory and applications of fractional differential equations (Elsevier, Amsterdam, 2006)zbMATHGoogle Scholar
  15. 15.
    C S Drapaca and S Sivaloganathan, J. Elast. 107, 105 (2012)CrossRefGoogle Scholar
  16. 16.
    H Nasrolahpour, Commun. Nonlinear Sci. 18, 2589 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    A Deshpande and V D Gejji, Pramana – J. Phys. 87: 49 (2016),
  18. 18.
    H Bulut, T A Sulaiman and H M Baskonus, Optik 163, 49 (2018)ADSCrossRefGoogle Scholar
  19. 19.
    V K Shchigolev, Commun. Theor. Phys. 56(2), 389 (2011)CrossRefGoogle Scholar
  20. 20.
    D G Prakasha, P Veeresha and H M Baskonus, Comp. Math. Methods 2(1), (2019), CrossRefGoogle Scholar
  21. 21.
    P Veeresha, D G Prakasha and H M Baskonus, Chaos 29, 013119 (2019), ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    A Atangana, Chaos Solitons Fractals 114, 347 (2018)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    D G Prakasha, P Veeresha and M S Rawashdeh, Math. Methods Appl. Sci. (2019), ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    J C Dalsgard, Lecture notes on stellar structure and evolution (Aarhus University Press, Aarhus, 2004)Google Scholar
  25. 25.
    I Klebanov, A Panov, S Ivanov and O Maslova, Commun. Nonlinear Sci. 59, 437 (2018)CrossRefGoogle Scholar
  26. 26.
    H Moradpour and A Abri, Int. J. Mod. Phys. D 12(1), (2016), CrossRefGoogle Scholar
  27. 27.
    M Matinfar and S J Nodeh, J. Math. Ext. 3(2), 61 (2009)MathSciNetGoogle Scholar
  28. 28.
    M Matinfar and M Saeidy, World Appl. Sci. J. 9(9), 980 (2010)Google Scholar
  29. 29.
    S J Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, Ph.D. thesis (Shanghai Jiao Tong University, 1992)Google Scholar
  30. 30.
    S J Liao, Appl. Math. Mech. 19, 957 (1998)CrossRefGoogle Scholar
  31. 31.
    J Singh, D Kumar and R Swroop, Alexandria Eng. J. 55(2), 1753 (2016)CrossRefGoogle Scholar
  32. 32.
    A Prakash, P Veeresha, D G Prakasha and M Goyal, Eur. Phys. J. Plus 134(19), (2019), CrossRefGoogle Scholar
  33. 33.
    H M Srivastava, D Kumar and J Singh, Appl. Math. Model 45, 192 (2017)MathSciNetCrossRefGoogle Scholar
  34. 34.
    J Singh, D Kumar, D Baleanu and S Rathore, Appl. Math. Comput. 335, 12 (2018)MathSciNetGoogle Scholar
  35. 35.
    H Bulut, D Kumar, J Singh, R Swroop and H M Baskonus, Math. Nat. Sci. 2(1), 33 (2018)CrossRefGoogle Scholar
  36. 36.
    D Kumar, R P Agarwal and J Singh, J. Comput. Appl. Math. 399, 405 (2018)CrossRefGoogle Scholar
  37. 37.
    P Veeresha, D G Prakasha, N Magesh, M M Nandeppanavar and A J Christopher, arXiv:1810.06311v2 [math.NA] (2019)
  38. 38.
    A Prakash, D G Prakasha and P Veeresha, Nonlinear Eng. (2019)CrossRefGoogle Scholar
  39. 39.
    P Veeresha, D G Prakasha and H M Baskonus, Math. Sci. 13, 33 (2019), MathSciNetCrossRefGoogle Scholar
  40. 40.
    M A Mohamed, Appl. Appl. Math. 4, 52 (2009)MathSciNetGoogle Scholar
  41. 41.
    H M Cherif, D Ziane and K Belghaba, Nonlinear Stud. 25(4), 53 (2018)MathSciNetGoogle Scholar
  42. 42.
    A J Al-Saif and F A Al-Saadawi, J. Phys. Sci. Appl. 5, 38 (2015)Google Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of MathematicsKarnatak UniversityDharwadIndia
  2. 2. Department of Mathematics, Faculty of ScienceDavangere UniversityShivagangothriIndia
  3. 3.Department of Mathematics and Science Education, Faculty of EducationHarran UniversityŞanliurfaTurkey

Personalised recommendations