Advertisement

Pramana

, 93:59 | Cite as

Multiple types of exact solutions and conservation laws of new coupled \((2+1)\)-dimensional Zakharov–Kuznetsov system with time-dependent coefficients

  • Bikramjeet Kaur
  • R K GuptaEmail author
Article
  • 82 Downloads

Abstract

This paper investigates the new coupled \((2+1)\)-dimensional Zakharov–Kuznetsov (ZK) system with time-dependent coefficients for multiple types of exact solutions by using the Lie symmetry transformation method. Similarity transformation reduces the system of equations into ordinary differential equations and further, these are solved for solutions having bright, dark and singular solitons as well as periodic waves. Also, the solutions appeared in terms of time-dependent coefficient \(\beta (t)\) and analysed graphically to show the effect of this arbitrary function. It is proved that the given system is nonlinear self-adjoint, and some conservation laws are obtained by applying the new conservation theorem.

Keywords

Lie’s infinitesimals criterion exact solutions new coupled \((2+1)\)-dimensional Zakharov–Kuznetsov system conservation laws 

PACS Nos

02.20.Sv 04.20.Jb 02.30.Jr 05.45.Yv 

Notes

Acknowledgements

Bikramjeet Kaur wishes to thank the University Grants Commission (UGC), New Delhi, India for financial support under Grant No. (F1-17.1 / 2013-14 / MANF-2013-14-SIK-PUN-21763). Rajesh Kumar Gupta thanks the Council of Scientific and Industrial Research (CSIR), India for financial support under Grant No. 25(0257)\({/}\)16 / EMR-II.

References

  1. 1.
    P J Olver, Applications of Lie groups to differential equations, in: Graduate texts in mathematics (Springer-Verlag, Berlin, 1993) Vol. 107Google Scholar
  2. 2.
    R Cimpoiasu, Pramana – J. Phys. 84(4), 543 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    R K Gupta and K Singh, Commun. Nonlinear Sci. Numer. Simul. 16(11), 4189 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    K Singh and R K Gupta, Int. J. Eng. Sci. 44(3–4), 241 (2006)CrossRefGoogle Scholar
  5. 5.
    R Kumar, R K Gupta and S S Bhatia, Pramana – J. Phys. 85(6), 1111 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    R K Gupta and M Singh, Nonlinear Dyn. 87(3), 1543 (2017)CrossRefGoogle Scholar
  7. 7.
    E Yaşar, Y Yildirim and I B Giresunlu, Pramana – J. Phys. 87(2): 18 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    E Noether, Nachr. d. König, Gesellsch. d. Wiss. zu Göttingen, Math. Phys. Klasse 1(3), 235 (1918)Google Scholar
  9. 9.
    S C Anco and G Bluman, Eur. J. Appl. Math. 13(5), 545 (2002)CrossRefGoogle Scholar
  10. 10.
    W Zhen-Li and L Xi-Qiang, Pramana – J. Phys. 85(1), 3 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    G M Wei, Y L Lu, Y Q Xie and W X Zheng, Comput. Math. Appl. 75(9), 3420 (2018)MathSciNetCrossRefGoogle Scholar
  12. 12.
    N H Ibragimov, J. Math. Anal. Appl. 333(1), 311 (2007)MathSciNetCrossRefGoogle Scholar
  13. 13.
    N H Ibragimov, J. Phys. A  44(43), 432002 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    A H Kara and F M Mahomed, Nonlinear Dyn. 45(3), 367 (2006)CrossRefGoogle Scholar
  15. 15.
    J Basingwa, A H Kara, A H Bokhari, R A Mousa and F D Zaman, Pramana – J. Phys. 87(5): 64 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    V E Zakharov and E A Kuznetsov, Sov. Phys. JETP 39, 285 (1974)ADSGoogle Scholar
  17. 17.
    A R Seadawy, Comput. Math. Appl. 67(1), 172 (2014)MathSciNetCrossRefGoogle Scholar
  18. 18.
    A R Seadawy, Phys. Plasmas 21(5), 052107 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    L P Zhang and J K Xue, Phys. Scr. 76(3), 238 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    J Wu, Appl. Math. Comput. 217(4), 1764 (2010)MathSciNetGoogle Scholar
  21. 21.
    Z Qin, Phys. Lett. A 355(6), 452 (2006)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    M K Elboree, Comput. Math. Appl. 70(5), 934 (2015)MathSciNetCrossRefGoogle Scholar
  23. 23.
    M Wei and S Tang, J. Appl. Anal. Comput. 1(2), 267 (2011)MathSciNetGoogle Scholar
  24. 24.
    C M Khalique, Math. Probl. Eng. 2013, 461327 (2013)CrossRefGoogle Scholar
  25. 25.
    E S Fahmy, Int. J. Mod. Math. Sci. 10(1), 1 (2014)Google Scholar
  26. 26.
    S T Chen and W X Ma, Complexity 2019, 8787460 (2019)Google Scholar
  27. 27.
    W X Ma, J. Geom. Phys. 133, 10 (2018)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    S T Chen and W X Ma, Front. Math. China 13, 525 (2018)MathSciNetCrossRefGoogle Scholar
  29. 29.
    S T Chen and W X Ma, Comput. Math. Appl. 76(7), 1680 (2018)MathSciNetCrossRefGoogle Scholar
  30. 30.
    W X Ma, Acta Math. Sci. 39(B), 498 (2019)Google Scholar
  31. 31.
    J Y Yang, W X Ma and Z Qin, Anal. Math. Phys. 8(3), 427 (2018)MathSciNetCrossRefGoogle Scholar
  32. 32.
    J Y Yang, W X Ma and Z Y Qin, East Asian J. Appl. Math. 8(2), 224 (2018)MathSciNetCrossRefGoogle Scholar
  33. 33.
    B Kaur and R K Gupta, Comput. Appl. Math. 37(5), 5981 (2018)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Z Yuping, W Junyi, W Guangmei and L Ruiping, Phys. Scr. 90(6), 065203 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    G W Bluman and S Kumei, Symmetries and differential equations (Springer-Verlag, New York, 1989)CrossRefzbMATHGoogle Scholar
  36. 36.
    S C Anco and G Bluman, Phys. Rev. Lett. 78(15), 2869 (1997)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    W X Ma, Symmetry 7(2), 714 (2015)MathSciNetCrossRefGoogle Scholar
  38. 38.
    W X Ma, Disc. Contin. Dyn. Syst. Ser. S 11(4), 707 (2018)Google Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.School of MathematicsThapar Institute of Engineering and TechnologyPatialaIndia
  2. 2.Department of Mathematics and StatisticsCentral University of PunjabBathindaIndia
  3. 3.Department of Mathematics, School of Physical and Mathematical SciencesCentral University of HaryanaMahendergarhIndia

Personalised recommendations