Advertisement

Pramana

, 92:95 | Cite as

Model of tunnelling through quantum dot and spin–orbit interaction

  • D A Eremin
  • E N Grishanov
  • I Y PopovEmail author
  • A A Boitsev
Article
  • 23 Downloads

Abstract

Solvable mathematical model is suggested for tunnelling through quantum dot. The model is based on the theory of self-adjoint extensions of symmetric operators. The spin–orbit interaction is taken into account. The transmission coefficient is obtained. The result is compared with the case where spin–orbit interaction is absent.

Keywords

Tunnelling quantum dot self-adjoint extension 

PACS Nos

73.23.Ad 02.30.Tb 

Notes

Acknowledgements

This work was financially supported partly by the Government of the Russian Federation (Grant No. 08-08), the Russian Science Foundation (Grant No. 16-11-10330), the Russian Foundation for Basic Research and the Government of the Republic of Mordovia of the Russian Federation (Grant No. 18-41-130004).

References

  1. 1.
    A A Clerk, X Waintal and P W Brouwer, Phys. Rev. Lett. 86, 4636 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    B R Bulka and P Stefanski, Phys. Rev. Lett. 86, 5128 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    M E Torio, K Hallberg, A H Ceccatto and C R Proetto, Phys. Rev. B 65, 085302 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    V A Geyler and I Y Popov, Phys. Lett. A 187, 410 (1994)ADSCrossRefGoogle Scholar
  5. 5.
    V A Geyler and I Y Popov, Theor. Math. Phys. 107(1), 427 (1996)CrossRefGoogle Scholar
  6. 6.
    V A Geyler, V A Margulis and M A Pyataev, J. Exper. Theor. Phys. 97(4), 763 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    B S Pavlov, Uspekhi Mat. Nauk 42(6), 99 (1987)MathSciNetGoogle Scholar
  8. 8.
    S Albeverio and P Kurasov, Singular perturbations of differential operators. Solvable Schrodinger type operators, in: London Mathematical Society Lecture Notes (Cambridge University Press, Cambridge, 2000) Vol. 271Google Scholar
  9. 9.
    A A Boitsev, J Brasche, H Neidhardt and I Y Popov, Nanosyst. Phys. Chem. Math. 9, 171 (2018)CrossRefGoogle Scholar
  10. 10.
    I Y Popov, P A Kurasov, S N Naboko, A A Kiselev, A E Ryzhkov, A M Yafyasov, G P Miroshnichenko, Yu E Karpeshina, V I Kruglov, T F Pankratova and A I Popov, Nanosystems: Phys. Chem. Math.  7, 782 (2016)Google Scholar
  11. 11.
    J Bruning and V A Geyler, J. Math. Phys. 44, 371 (2003)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    C L Foden, M L Leadbeater and M Pepper, Phys. Rev. B 52, R8646 (1995)ADSCrossRefGoogle Scholar
  13. 13.
    L I Magarill, D A Romanov and A V Chaplik, J. Exp. Theor. Phys. 113(4), 1411 (1998)Google Scholar
  14. 14.
    A Ambrosetti, F Pederiva, E Lipparini and S Gandolfi, Phys. Rev. B 80, 125306 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    B M Anderson, I B Spielman and G Juzeliunas, Phys. Rev. Lett. 111, 125301 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    E I Rashba, Sov. Phys. Solid State 1, 368 (1959)Google Scholar
  17. 17.
    G Dresselhaus, Phys. Rev. 100, 580 (1955)ADSCrossRefGoogle Scholar
  18. 18.
    G Bihlmayer, O Rader and R Winkler, New J. Phys. 17, 050202 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    K Ishizaka et al, Nat. Mater. 10, 521 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    D Di Sante, P Barone, R Bertacco and S Picozzi, Adv. Mater. 25, 509 (2013)CrossRefGoogle Scholar
  21. 21.
    P Exner and P Seba, Russian J. Math. Phys. 14, 430 (2007)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    J Brüning, V Geyler and K Pankrashkin, J. Phys. A 40, F697 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    C Cacciapuoti, R Carlone and R Figari, J. Phys. A 40, 249 (2007)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    R Jursenas, J. Phys. A 49(6), 065202 (2016)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    V M Adamjan and B S Pavlov, Proc. LOMI 149, 7 (1986)Google Scholar
  26. 26.
    J Behrndt, M Langer and V Lotoreichik, Nanosyst. Phys. Chem. Math. 7, 290 (2016)CrossRefGoogle Scholar
  27. 27.
    D A Eremin, D A Ivanov and I Y Popov, Physica E 44, 1598 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    M M Malamud and H Neidhardt, J. Funct. Anal. 360, 613 (2011)CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of Mathematics and Information TechnologyOgarev Mordovia State UniversitySaranskRussia
  2. 2.Department of Higher MathematicsITMO UniversitySt. PetersburgRussia

Personalised recommendations