Advertisement

Pramana

, 92:92 | Cite as

Design of polarisation-dependent multiband terahertz frequency-selective surface using two resonators

  • S Sasi PrincyEmail author
  • B S Sreeja
  • E Manikandan
  • S Radha
Article
  • 37 Downloads

Abstract

The aim of this paper is to present the frequency-selective surface (FSS) filter operating in the terahertz regime, emphasising on its polarisation-dependent nature. The FSS filter consists of two-concentric hexagonal-shaped metal strips embossed on a gold layer over the teflon substrate, created in the form of a split ring resonator (SRR). The emphasised polarisation-dependent nature of the FSS structure has been proved by analysing the frequency response. Numerical simulation has been done using the CST microwave studio software. Resonance occurs at five frequencies in the transverse electric (TE) mode and at four frequencies in the transverse magnetic (TM) mode, describing the polarisation-dependent nature of the proposed FSS filter structure.

Keywords

Frequency-selective surface filter terahertz polarisation 

PACS Nos

42.60.Da 42.79.Ci 

References

  1. 1.
    A Y Pawar, D D Sonawane, K B Erande and D V Derle, Drug Invent. Today 5, 157 (2013)CrossRefGoogle Scholar
  2. 2.
    M Gil, J Bonache and F Martín, Metamaterials 2, 186 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    J P Turpin, J A Bossard, K L Morgan, D H Werner and P L Werner, Int. J. Antennas Propag. 2014, 1 (2014)CrossRefGoogle Scholar
  4. 4.
    A K Horestani, W Withayachumnankul, A Chahadih, A Ghaddar, M Zehar, D Abbott, C Fumeaux and T Akalin, IEEE Trans. Terahertz Sci. Technol. 3, 851 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    S Tan, F Yan, N Xu, J Zheng, W Wang and W Zhang, AIP Adv. 8, 25020 (2018),  https://doi.org/10.1063/1.5017099
  6. 6.
    A J Gallant, M A Kaliteevski, D Wood, M C Petty, R A Abram, S Brand, G P Swift, D A Zeze and J M Chamberlain, Appl. Phys. Lett. 91, 89 (2007)CrossRefGoogle Scholar
  7. 7.
    C Sabah, B Mulla, H Altan and L Ozyuzer, Pramana – J. Phys. 91: 17 (2018),  https://doi.org/10.1007/s12043-018-1591-4 ADSCrossRefGoogle Scholar
  8. 8.
    Z Y Li and Y J J Ding, Conf. Lasers Electro-Opt. 3, 3 (2012)Google Scholar
  9. 9.
    X Zhang, L Xia and Z Zhang, IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (Chongqing, 2016) p. 405Google Scholar
  10. 10.
    M Z Lu, W Z Li and E R Brown, Opt. Lett. 36, 1071 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    A Kumar and M V Kartikeyan, Act. Passiv. Electron. Compon. 2013, 6 (2013)CrossRefGoogle Scholar
  12. 12.
    S Chaimool and P Akkaraekthalin, Radioengineering 21, 611 (2012)Google Scholar
  13. 13.
    E Manikandan, B S Sreeja, S Radha and R N Bathe, Mater. Lett. 229, 320 (2018)Google Scholar
  14. 14.
    E Manikandan, B S Sreeja, S Radha, R N Bathe and R Jain, J. Infrared Millim. Terahertz Waves 40, 38 (2019),  https://doi.org/10.1007/s10762-018-0543-x CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • S Sasi Princy
    • 1
    Email author
  • B S Sreeja
    • 1
  • E Manikandan
    • 1
  • S Radha
    • 1
  1. 1.Department of ECESSN College of EngineeringChennaiIndia

Personalised recommendations