Advertisement

Pramana

, 92:77 | Cite as

Synchronisation of cyclic coupled Josephson junctions and its microcontroller-based implementation

  • K S Ojo
  • A O AdelakunEmail author
  • A A Oluyinka
Article
  • 4 Downloads

Abstract

Based on Routh–Hurwitz criterion, this paper reports on synchronisation of two coupled 3D Josephson junctions via cyclic coupling. Analytical conditions which lead to stable synchronisation through the cyclic coupling were derived. Numerical and microcontroller-based circuit simulations are employed to verify the feasibility and effectiveness of the derived analytical criteria. The cyclic coupling has potential applications in neural information transmission and communication in natural systems.

Keywords

Cyclic coupling Routh–Hurwitz criterion chaotic oscillator microcontroller-based implementation 

PACS Nos

12.60.Jv 12.10.Dm 98.80.Cq 11.30.Hv 

References

  1. 1.
    V K Tamba, S T Kingni, G F Kuiate, H B Fotsin and P K Talla, Pramana – J. Phys. 91: 12 (2018)ADSCrossRefGoogle Scholar
  2. 2.
    A Babloyantz and A Destexhe, Proc. Natl. Acad. Sci. USA 83(10), 3513 (1986)ADSCrossRefGoogle Scholar
  3. 3.
    W W Lytton, Nature Rev. Neurosci. 9, 626 (2008)CrossRefGoogle Scholar
  4. 4.
    A Y T Leung, X-F Li, Y-D Chu and X-B Rao, Nonlinear Dyn. 82(1–2), 185 (2015)CrossRefGoogle Scholar
  5. 5.
    S Guo, J Ma and A Alsaedi, Pramana – J. Phys. 90: 39 (2018)ADSCrossRefGoogle Scholar
  6. 6.
    B K Sarabi, M Sharma and D Kaur, Pramana – J. Phys. 89: 24 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    S Saha, A Mishra, E Padmanaban, S K Bhowmick, P K Roy, B Dam and S K Dana, Phys. Rev. E 95, 062204 (2017)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    A O Adelakun, A N Njah, O I Olusola and S T Wara, Adv. Phys. Theor. Appl. 50, 7 (2015)Google Scholar
  9. 9.
    T Deng, G Q Xia and Z M Wu, Nonlinear Dyn. 76, 399 (2014)CrossRefGoogle Scholar
  10. 10.
    J Machowski, J Bialek and J Bumby, Power system dynamics: Stability and control (John Wiley and Sons, New York, 2011)Google Scholar
  11. 11.
    P A Mohammad and P A Hasan, Nonlinear Dyn. 73, 363 (2013)CrossRefGoogle Scholar
  12. 12.
    M Hirota, M Holmgren, E H Van Nes and M Scheer, Science 334, 232 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    L M Pecora and T L Carroll, Phys. Rev. Lett. 64(8), 821 (1990)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    O I Olusola, A N Njah and S K Dana, Eur. Phys. J. Spec. Top. 222, 927 (2013)CrossRefGoogle Scholar
  15. 15.
    C Letellier and L A Aguirre, Phys. Rev. E 82(1), 016204 (2010)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    L Huang, Q Chen, Y-C Lai and L M Pecora, Phys. Rev. E 80(3), 036204 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    C C Yang, J. Sound Vib. 331, 501 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    B Zhang and F Deng, Nonlinear Dyn.  77, 1519 (2014)CrossRefGoogle Scholar
  19. 19.
    F Yu, C Wang, Q Wan and Y Hu, Pramana – J. Phys.  80(2), 223 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    A N Njah, J. Sound Vib.  17, 493 (2011)MathSciNetGoogle Scholar
  21. 21.
    M Varan and A Akgul, Pramana – J. Phys.  90: 54 (2018)ADSCrossRefGoogle Scholar
  22. 22.
    J Lu, D W C Ho, J Cao and J Kurth, Nonlinear Anal. Real World Appl.  14(1), 581 (2013)MathSciNetCrossRefGoogle Scholar
  23. 23.
    M Ma, J Zhou and J Cai, Int. J. Mod. Phys. C  23(11), 1250073 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    D Yang and J Zhou, Commun. Nonlinear Sci. Numer. Simulat.  19, 3954 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    B A Idowu, A Ucar and U E Vincent, African Phys. Rev.  3, 35 (2009)Google Scholar
  26. 26.
    A N Njah and K S Ojo, Int. J. Mod. Phys. B  24(23), 4581 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    K S Ojo, A N Njah and S T Ogunjo, Pramana – J. Phys.  80(5), 825 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    E Kandel, J Schwartz and T Jessell, Principles of neural science (McGraw-Hill, USA, 2000)Google Scholar
  29. 29.
    B K Bera, C Hens, S K Bhowmick, P Pal and D Ghosh, Phys. Lett. A  380, 130 (2016)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    A I Egunjobi, O I Olusola, A N Njah, S Saha, S K Dana, Commun. Nonlinear Sci. Numer. Simulat. 56, 588 (2018)ADSCrossRefGoogle Scholar
  31. 31.
    D-Y Chen, W-L Zhao, X-Y Ma and R-F Zhang, Abstr. Appl. Anal.,   https://doi.org/10.1155/2012/378457 (2012)CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of LagosAkokaNigeria
  2. 2.Department of PhysicsFederal University of TechnologyAkureNigeria

Personalised recommendations