Advertisement

Pramana

, 92:68 | Cite as

A modified efficiency centrality to identify influential nodes in weighted networks

  • Yunchuan Wang
  • Shasha Wang
  • Yong DengEmail author
Article

Abstract

It is still a crucial issue to identify influential nodes effectively in the study of complex networks. As for the existing efficiency centrality (EffC), it cannot be applied to a weighted network. In this paper, a modified efficiency centrality (EffC\(^\mathrm{m}\)) is proposed by extending EffC into weighted networks. The proposed measure trades off the node degree and global structure in a weighted network. The influence of both the sum of the average degree of nodes in the whole network and the average distance of the network is taken into account. Numerical examples are used to illustrate the efficiency of the proposed method.

Keywords

Complex network influential nodes weighted network efficiency centrality 

PACS No

02.90.+p 

Notes

Acknowledgements

The authors greatly appreciate the reviewers’ suggestions and the editor’s encouragement. The work was partially supported by the National Natural Science Foundation of China (Grant Nos 61573290, 61503237).

References

  1. 1.
    S H Strogatz, Nature 410, 268 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    M E J Newman, SIAM Rev. 45(2), 167 (2003)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    E E Schadt, Nature 461(7261), 218 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    Y Yang, G Xie and J Xie, Dis. Dyn. Nat. Soc. 2017, 1 (2017)Google Scholar
  5. 5.
    S Wang, Pramana – J. Phys. 90(2): 25 (2018)ADSCrossRefGoogle Scholar
  6. 6.
    F Nian and W Liu, Pramana – J. Phys. 86(6), 1209 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    Y C Lai, A Motter, T Nishikawa, K Park and L Zhao, Pramana – J. Phys. 64(4), 483 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    H E Ping, C G Jing, C Z Chen, T Fan and H S Nik, PramanaJ. Phys. 82(3), 499 (2014)ADSCrossRefGoogle Scholar
  9. 9.
    D R Amancio, Europhys. Lett.  114(5), 58005 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    D R Amancio, PLoS ONE 10(8), e0136076 (2015)Google Scholar
  11. 11.
    Y Han and Y Deng, J. Ambient Intell. Humaniz. Comput. 9(6), 1933 (2018)CrossRefGoogle Scholar
  12. 12.
    L Fei, Q Zhang and Y Deng, Physica A 512, 1044 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    T Zhou, G Yan and B-H Wang, Phys. Rev. E 71(4), 046141 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    M Kitsak, L K Gallos, S Havlin, F Liljeros, L Muchnik, H E Stanley and H A Makse, Nat. Phys. 6(11), 888 (2010)CrossRefGoogle Scholar
  15. 15.
    D R Amancio, M G V Nunes, O N Oliveira Jr., T A S Pardo, L Antiqueira and L Da F Costa, Phys. A: Stat. Mech. Appl. 390(1), 131 (2011)Google Scholar
  16. 16.
    Z Cheng, H T Zhang, M Z Q Chen, T Zhou and N V Valeyev, PLoS ONE 6(7), e22123 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    D R Amancio, PLoS ONE 10(2), e0118394 (2015)CrossRefGoogle Scholar
  18. 18.
    D R Amancio, Scientometrics 105(3), 1763 (2015)Google Scholar
  19. 19.
    D R Amancio, O N Oliveira Jr and L Da F Costa, New J. Phys. 14(21), 1759 (2012)Google Scholar
  20. 20.
    F N Silva, D R Amancio, M Bardosova, L Da F Costa and O N Oliveira Jr, J. Informetr. 10(2), 487 (2016)Google Scholar
  21. 21.
    A Zeng, Z Shen, J Zhou, J Wu, Y Fan, Y Wang and H E Stanley, Phys. Rep. 714–715, 1 (2017)Google Scholar
  22. 22.
    M P Viana, D R Amancio and L Da F Costa, J. Informetr. 7(2), 371 (2013)Google Scholar
  23. 23.
    V Nicosia, R Criado, M Romance, G Russo and V Latora, Sci. Rep. 2, 218 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    T Opsahl, F Agneessens and J Skvoretz, Soc. Netw. 32(3), 245 (2010)CrossRefGoogle Scholar
  25. 25.
    L C Freeman, Soc. Netw. 1(3), 215 (1978)CrossRefGoogle Scholar
  26. 26.
    D Chen, L Lü, M S Shang, Y C Zhang and T Zhou, Phys. A: Stat. Mech. Appl. 391(4), 1777 (2012)CrossRefGoogle Scholar
  27. 27.
    P Bonacich and P Lloyd, Soc. Netw. 23(3), 191 (2001)CrossRefGoogle Scholar
  28. 28.
    L Katz, Psychometrika 18(1), 39 (1953)CrossRefGoogle Scholar
  29. 29.
    S Brin and L Page, Comput. Netw. ISDN Syst. 30, 107 (1998)CrossRefGoogle Scholar
  30. 30.
    L Lü, Y C Zhang, H Y Chi and Z Tao, PLoS ONE 6(6), e21202 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    T Bian and Y Deng, Chaos 28, 043109 (2018), https://doi.org/10.1063/1.5030894
  32. 32.
    G Bagler, Physica A 387(12), 2972 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    R Zhang, B Ashuri and Y Deng, Adv. Data Anal. Classif. 11(4), 759 (2017)MathSciNetCrossRefGoogle Scholar
  34. 34.
    L Yin and Y Deng, Physica A 498, 102 (2018)CrossRefGoogle Scholar
  35. 35.
    L Yin and Y Deng, Physica A 508, 176 (2018)CrossRefGoogle Scholar
  36. 36.
    Y Li and Y Deng, Int. J. Comput. Commun. Control 13(5), 771 (2018)CrossRefGoogle Scholar
  37. 37.
    Y Han and Y Deng, Soft Comput. 22(15), 5073 (2018)CrossRefGoogle Scholar
  38. 38.
    H Mo and Y Deng, Int. J. Fuzzy Syst. 20(8), 2458 (2018), https://doi.org/10.1007/s40815-018-0514-3
  39. 39.
    H Xu and Y Deng, IEEE Access 6(1), 11634 (2018)CrossRefGoogle Scholar
  40. 40.
    W Deng, X Lu and Y Deng, Math. Probl. Eng. 2018, 1 (2018)Google Scholar
  41. 41.
    T Bian, H Zheng, L Yin and Y Deng, Qual. Reliab. Eng. Int. 34, 501 (2018)CrossRefGoogle Scholar
  42. 42.
    H Zheng and Y Deng, Int. J. Intell. Syst. 33(7), 1343 (2018)CrossRefGoogle Scholar
  43. 43.
    S Wang, Y Du and Y Deng, Commun. Nonlinear Sci. Numer. Simul. 47, 151 (2017)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    T Zhu, S P Zhang, R X Guo and G C Chang, Syst. Eng. Electron. 31(8), 1902 (2009)Google Scholar
  45. 45.
    M Li, Q Zhang and Y Deng, Chaos Solitons Fractals 117, 283 (2018),  https://doi.org/10.1016/j.chaos.2018.04.033
  46. 46.
    B Kang, G Chhipi-Shrestha, Y Deng, K Hewage and R Sadiq, Appl. Math. Comput. 324, 202 (2018)MathSciNetGoogle Scholar
  47. 47.
    B Kang, Y Deng, K Hewage and R Sadiq, Int. J. Intell. Syst. 33(8), 1745 (2018)CrossRefGoogle Scholar
  48. 48.
    M Kaiser and C C Hilgetag, Phys. Rev. E 69(2), 036103 (2004)ADSCrossRefGoogle Scholar
  49. 49.
    M E J Newman, Proc. Natl. Acad. Sci. 98(2), 404 (2001)ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    D J Watts and S H Strogatz, Nature 393(6684), 440 (1998)Google Scholar
  51. 51.
    M E Newman, Phys. Rev. Lett. 89(20), 208701 (2002)ADSCrossRefGoogle Scholar
  52. 52.
    L J Allen, Math. Biosci. 124(1), 83 (1994)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Z Yang and T Zhou, Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 85(2), 056106 (2012)Google Scholar
  54. 54.
    W Yan, T Zhou, J Wang, Z Fu and B Wang, Chin. Phys. Lett. 22(2), 510 (2004)ADSGoogle Scholar
  55. 55.
    Z Wang, M A Andrews, Z-X Wu, L Wang and C T Bauch, Phys. Life Rev. 15, 1 (2015)ADSCrossRefGoogle Scholar
  56. 56.
    Z Wang, C T Bauch, S Bhattacharyya, A d’Onofrio, P Manfredi, M Perc, N Perra, M Salathé and D Zhao, Phys. Rep. 664, 1 (2016)ADSMathSciNetCrossRefGoogle Scholar
  57. 57.
    L Lü, D Chen, X-L Ren, Q-M Zhang, Y-C Zhang and T Zhou, Phys. Rep. 650, 1 (2016)ADSMathSciNetCrossRefGoogle Scholar
  58. 58.
    Z Wang, Y Moreno, S Boccaletti and M Perc, Chaos Solitons Fractals 103, 177 (2017)Google Scholar
  59. 59.
    F Rakowski, M Gruziel, Ł Bieniasz-Krzywiec and J P Radomski, Physica A 389(16), 3149 (2010)Google Scholar
  60. 60.
    R W Floyd, Commun. ACM 5(6), 345 (1962)CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.School of Electronic Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.School of Computer ScienceSichuan UniversityChengduChina
  3. 3.Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengduChina
  4. 4.Big Data Decision InstituteJinan UniversityGuangzhouChina
  5. 5.School of Computer and Information ScienceSouthwest UniversityChongqingChina

Personalised recommendations