Advertisement

Pramana

, 92:44 | Cite as

Neutron star cooling via axion emission by nucleon–nucleon axion bremsstrahlung

  • Avik PaulEmail author
  • Debasish Majumdar
  • Kamakshya Prasad Modak
Article
  • 6 Downloads

Abstract

Neutron stars generally cool off by the emission of \(\gamma \)-rays and neutrinos. But axions can also be produced inside a neutron star by the process of nucleon–nucleon axion bremsstrahlung. The escape of these axions adds to the cooling process of the neutron star. We explore the nature of cooling of neutron stars including the axion emission and compare our result with the scenario when the neutron star is cooled by only the emission of \(\gamma \)-rays and neutrinos. In our calculations we consider both the degenerate and non-degenerate limits for such axion energy loss rate and the resulting variation of luminosity with time and variation of surface temperature with time of the neutron star. In short, the thermal evolution of a neutron star is studied with three neutron star masses (1.0, 1.4 and 1.8 solar masses) and by including the effect of axion emission for different axion masses (\(m_{a}=10^{-5}, 10^{-3}\) and \(10^{-2}\,\mathrm{eV}\)) and compared with the same when the axion emission is not considered. We compared theoretical cooling curve with the observational data of three pulsars PSR B0656\(+\)14, Geminga and PSR B1055-52 and finally gave an upper bound on axion mass limits \(m_{a}\le 10^{-3}\,\mathrm{eV}\) which implies that the axion decay constant \(f_{a}\ge 0.6\times 10^{10}\,\mathrm{GeV}\).

Keywords

Axion neutron star cooling nucleon–nucleon axion bremsstrahlung 

PACS Nos

12.60.Jv 12.10.Dm 98.80.Cq 11.30.Hv 

References

  1. 1.
    G Baym and F K Lamb, arXiv: physics/0503245 (2005)
  2. 2.
    M Prakash, Pramana – J. Phys. 84(5), 927 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    F Wilczek, Phys. Rev. Lett. 40, 279 (1978)ADSCrossRefGoogle Scholar
  4. 4.
    S Weinberg, Phys. Rev. Lett. 40, 223 (1978)ADSCrossRefGoogle Scholar
  5. 5.
    R D Peccei, Lect. Notes Phys. 741, 3 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    G ’t Hooft, Phys. Rev. Lett. 37, 8 (1976)ADSCrossRefGoogle Scholar
  7. 7.
    R D Peccei and H R Quinn, Phys. Rev. Lett. 38, 1440 (1977)ADSCrossRefGoogle Scholar
  8. 8.
    A Ringwald, PoS NOW 2016, 081 (2016), arXiv:1612.08933 [hep-ph]Google Scholar
  9. 9.
    C Hagmann, H Murayama, G G Raffelt, L J Rosenberg and K van Bibber, Axions and other similar particles, http://pdg.lbl.gov/2009/reviews/rpp2009-rev-axions.pdf
  10. 10.
    A Melchiorri, O Mena and A Slosar, Phys. Rev. D 76, 041303 (2007) S Hannestad et al, J. Cosmol. Astropart. Phys. 0804, 019 (2008)Google Scholar
  11. 11.
    CAST Collaboration: K Zioutas et al, Phys. Rev. Lett. 94, 121301 (2005), hep-ex/0411033Google Scholar
  12. 12.
    D Cadamuro, arXiv:1210.3196 [hep-ph]
  13. 13.
    J Leskinen, Axion cosmology, Master’s thesis (University of Jyväskylä, 2016) unpublishedGoogle Scholar
  14. 14.
    Z G Berezhiani, A S Sakharov and M Y Khlopov, Sov. J. Nucl. Phys. 55, 1063 (1992); Yad. Fiz. 55, 1918 (1992)Google Scholar
  15. 15.
    G G Raffelt, Lect. Notes Phys. 741, 51 (2008)ADSCrossRefGoogle Scholar
  16. 16.
    G Raffelt and A Weiss, Phys. Rev. D 51, 1495 (1995)ADSCrossRefGoogle Scholar
  17. 17.
    A Sedrakian, Phys. Rev. D 93(6), 065044 (2016)ADSCrossRefGoogle Scholar
  18. 18.
    H Umeda, N Iwamoto, S Tsuruta, L Qin and K Nomoto, arxiv:astro-ph/9806337
  19. 19.
    G G Raffelt, Stars as laboratories for fundamental physics, The astrophysics of neutrinos, axions, and other weakly interacting particles (Chicago University Press, USA, 1996) 664 pagesGoogle Scholar
  20. 20.
    R P Brinkmann and M S Turner, Phys. Rev. D 38, 2338 (1988)ADSCrossRefGoogle Scholar
  21. 21.
    G Raffelt and D Seckel, Phys. Rev. D 52, 1780 (1995)ADSCrossRefGoogle Scholar
  22. 22.
    J M Greenberg and C Shen, Astrophys. Space Sci. 269, 33 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    B Berenji, J Gaskins and M Meyer, Phys. Rev. D 93(4), 045019 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    P M Pizzochero, arXiv:1609.07587 [astro-ph.HE]
  25. 25.
    http://www.astroscu.unam.mx/neutrones/NSCool/. Dany Page, Cooling of Neutron Stars, Lecture 2
  26. 26.
    http://www.astroscu.unam.mx/neutrones/NSCool/. We use the files Crust-EOS-Cat-HZD-NV.dat and APR-EOS-Cat.dat for the equation of state input
  27. 27.
    D Page, U Geppert and F Weber, Nucl. Phys. A 777, 497 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    A Akmal, V R Pandharipande and D G Ravenhall, Phys. Rev. C 58, 1804 (1998)ADSCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Astroparticle Physics and Cosmology DivisionSaha Institute of Nuclear Physics, HBNIKolkataIndia
  2. 2.Department of PhysicsBrahmananda Keshab Chandra CollegeKolkataIndia

Personalised recommendations