Advertisement

Pramana

, 92:34 | Cite as

Thermodynamics analysis of Ricci dark energy models in bouncing Universe

  • Ayman A AlyEmail author
Article
  • 12 Downloads

Abstract

Ricci dark energy (RDE) model in the framework of bouncing Universe is considered. Both the interacting and the non-interacting cases of the Ricci model of dark energy have been studied. Expressions for important cosmic parameters are reconstructed for the assumed model. It is noticed that the Universe undergoes a continuous expansion with a negative deceleration parameter for two scenarios. Also, Om diagnostic parameter has been established showing a type of quintessence-like behaviour over the given time range. The total entropy of the system is calculated and the validity of the generalised second law of thermodynamics is studied.

Keywords

Dark energy bouncing Universe second law of thermodynamics 

PACS Nos

95.36.+d 04.50.Kd 

References

  1. 1.
    A G Riess et al, J. Astron. 116, 1009 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    K Ichiki et al, J. Cosmol. Astropart. Phys. 06, 005 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    P Astier et al, Astron. Astrophys. 447, 31 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    P de Bernardis et al, Nature 404, 955 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    C L Bennett et al, J. Astrophys. 148, 1 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    C Armendariz-Picon et al, Phys. Rev. D 63, 103510 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    B Ratra and P J Peebles, Phys. Rev. D 37, 3406 (1988)ADSCrossRefGoogle Scholar
  8. 8.
    A Sen, J. High Energy Phys. 4, 48 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    R R Caldwell, Phys. Lett. B 545, 23 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    N Arkani-Hamed et al, J. Cosmol. Astropart. Phys. 4, 1 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    A Anisimov, J. Cosmol. Astropart. Phys. 6, 6 (2005)CrossRefGoogle Scholar
  12. 12.
    A Kamenshchik et al, Phys. Lett. B 511, 265 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    H Wei and R G Cai, Phys. Lett. B 660, 113 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    M Li, Phys. Lett. B 603, 1 (2004)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    C Gao et al, Phys. Rev. D 79, 043511 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    L N Granda, Int. J. Mod. Phys. D 18, 1749 (2009)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    K Enqvist et al, J. Cosmol. Astropart. Phys. 2, 4 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    M Bojowald, Phys. Rev. Lett. 86, 5227 (2001)ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    A Ashtekar et al, Phys. Rev. Lett. 96, 141301 (2006)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Y Shtanov and V Sahni, Phys. Lett. 557, 1 (2003)CrossRefGoogle Scholar
  21. 21.
    M G Brown et al, J. Cosmol. Astropart. Phys. 0803, 002 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    A Ashtekar, T Pawlowski and P Singh, Phys. Rev. 73, 124038 (2006)ADSMathSciNetGoogle Scholar
  23. 23.
    M R Setare, Int. J. Mod. Phys. 17, 2219 (2008)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    A Pasqaua, Astrophys. Space Sci. 340, 199 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    WMAP Collaboration: E Komatsu et al, Astrophys. J. Suppl. 192, 18 (2011)Google Scholar
  26. 26.
    M M Sharif et al, Eur. Phys. J. C 72, 1901 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    F Karolyhazy, Nuovo Cimento 42, 390 (1966)ADSCrossRefGoogle Scholar
  28. 28.
    M Sharif and A Jawad, Eur. J. Palliative Care 72, 2097 (2012)Google Scholar
  29. 29.
    A A Aly et al, Int. J. Theor. Phys. 53(2), 566 (2014)CrossRefGoogle Scholar
  30. 30.
    A A Mamon et al, arXiv:1802.07925v1 [gr-qc]
  31. 31.
    M R Setare, Astrophys. Space Sci. 326, 27 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    Y S Myung, Phys. Lett. B 652, 223 (2007)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    P Bhandari, S Haldar and S Chakraborty, Eur. Phys. J. C 77, 840 (2017)ADSCrossRefGoogle Scholar
  34. 34.
    A Y Shaikh and S D Katore, Pramana – J. Phys. 87: 88 (2016)Google Scholar
  35. 35.
    V Sahni et al, Phys. Rev. D 78, 103502 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    M Carmeli et al, Found. Phys. Lett. 17(3), 277 (2006)CrossRefGoogle Scholar
  37. 37.
    V Sahni et al, Phys. Lett. 77, 201 (2003)Google Scholar
  38. 38.
    M R Setare, Phys. Lett. B 641, 130 (2006)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    J D Bekenstein, Phys. Rev. 2333, 7 (1973)Google Scholar
  40. 40.
    E K Li, Gen. Rel. Grav. 47, 136 (2015)ADSCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Physics Department, Faculty of ScienceDamanhour UniversityDamanhourEgypt

Personalised recommendations