Advertisement

Pramana

, 92:40 | Cite as

Compact relativistic star with quadratic envelope

  • P Mafa Takisa
  • S D MaharajEmail author
  • C Mulangu
Article
  • 4 Downloads

Abstract

We consider an uncharged anisotropic stellar model with two distinct equations of state in general relativity. The core layer has a quark matter distribution with a linear equation of state. The envelope layer has a matter distribution which is quadratic. The interfaces between the core, envelope and the vacuum exterior regions are smoothly matched. We find radii, masses and compactifications for five different compact objects which are consistent with other investigations. In particular, the properties of the pulsar object PSR J1614-2230 are studied. The metric functions and the matter distribution are regular throughout the star. In particular, it is shown that the radii associated with the core and the envelope can change for different parameter values.

Keywords

General relativity relativistic star equation of state 

PACS Nos

04.20.–q 04.20.Jb 04.40.Dg 

Notes

Acknowledgements

PMT is grateful to the National Research Foundation and Mangosuthu University of Technology for financial aid. SDM acknowledges that this work is based on the research supported by the South African Research Chair Initiative of the Department of Science and Technology and the National Research Foundation. CM thanks the National Research Foundation and Mangosuthu University of Technology for financial aid.

References

  1. 1.
    E Witten, Phys. Rev. D 30, 272 (1984)ADSCrossRefGoogle Scholar
  2. 2.
    E Farhi and R L Jaffe, Phys. Rev. D 30, 2379 (1984)ADSCrossRefGoogle Scholar
  3. 3.
    R Sharma and S Mukherjee, Mod. Phys. Lett. A 17, 2535 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    M Nauenberg and G Chapline, Astrophys. J. 179, 277 (1979)ADSCrossRefGoogle Scholar
  5. 5.
    C Rhoades and R Ruffini, Phys. Rev. Lett. 32, 324 (1974)ADSCrossRefGoogle Scholar
  6. 6.
    J B Hartle, Phys. Rep. 46, 201 (1978)ADSCrossRefGoogle Scholar
  7. 7.
    T Gangopadhyay, S Ray, X-D Li, J Dey and M Dey, Mon. Not. R. Astron. Soc. 431, 3216 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    S Hansraj, S D Maharaj and S Mlaba, J. Math. Phys. 131, 4 (2016)Google Scholar
  9. 9.
    P Bhar, M Govender and R Sharma, Eur. Phys. J. C 77, 109 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    A A Usmani, F Rahaman, S Ray, K K Nandi, P K F Kuhfittig, S A Rakib and Z Hasan, Phys. Lett. B 701, 388 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    F Rahaman, S Ray, A A Usmani and S Islam, Phys. Lett. B 707, 319 (2012)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    F Rahaman, A A Usmani, S Ray and S Islam, Phys. Lett. B 717, 1 (2012)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    F Rahaman, S Chakraborty, S Ray, A A Usmani and S Islam, Int. J. Theor. Phys. 54, 50 (2015)CrossRefGoogle Scholar
  14. 14.
    R Chan, M F A da Silva and P Rocha, Gen. Relativ. Gravit. 43, 2223 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    M C Durgapal and G L Gehlot, Phys. Rev. D 183, 1102 (1969)ADSCrossRefGoogle Scholar
  16. 16.
    M C Durgapal and G L Gehlot, J. Phys. A 4, 749 (1971)ADSCrossRefGoogle Scholar
  17. 17.
    R S Fuloria, M C Durgapal and S C Pande, Astrophys. Space Sci. 148, 95 (1988)ADSCrossRefGoogle Scholar
  18. 18.
    R S Fuloria, M C Durgapal and S C Pande, Astrophys. Space Sci. 151, 255 (1989)ADSCrossRefGoogle Scholar
  19. 19.
    P S Negi, A K Pande and M C Durgapal, Gen. Relativ. Gravit. 22 735 (1989)ADSCrossRefGoogle Scholar
  20. 20.
    P S Negi, A K Pande and M C Durgapal, Astrophys. Space Sci. 167 41 (1990)ADSCrossRefGoogle Scholar
  21. 21.
    R Sharma and S Mukherjee, Mod. Phys. Lett. A 16, 1049 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    B C Paul and R Tikekar, Gravit. Cosmol. 11, 244 (2005)ADSGoogle Scholar
  23. 23.
    R Tikekar and V O Thomas, Pramana – J. Phys. 64, 5 (2005)Google Scholar
  24. 24.
    V O Thomas, B S Ratanpal and P C Vinodkumar, Int. J. Mod. Phys. D 14, 85 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    R Tikekar and K Jotania, Gravit. Cosmol. 15, 129 (2009)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    P Mafa Takisa and S D Maharaj, Astrophys. Space Sci. 361, 262 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    P Mafa Takisa and S D Maharaj, Astrophys. Space Sci. 343, 569 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    S Thirukkanesh and F C Ragel, Pramana – J. Phys. 81, 275 (2013)Google Scholar
  29. 29.
    P Mafa Takisa, S Ray and S D Maharaj, Astrophys. Space Sci. 350, 733 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    T Feroze and A A Siddiqui, Gen. Relativ. Gravit. 43, 1025 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    S D Maharaj and P Mafa Takisa, Gen. Relativ. Gravit. 44, 1419 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    P Mafa Takisa, S D Maharaj and S Ray, Astrophys. Space Sci. 354, 463 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    H A Buchdahl, Astrophys. Space Sci. 116, 1027 (1959)Google Scholar
  34. 34.
    R Sharma and S D Maharaj, Mon. Not. R. Astron. Soc. 375, 1265 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer ScienceUniversity of KwaZulu-NatalDurbanSouth Africa
  2. 2.Department of Electrical EngineeringMangosuthu University of TechnologyUmlazi, DurbanSouth Africa

Personalised recommendations