Advertisement

Pramana

, 92:46 | Cite as

Investigation on the electrical and optical properties of some zinc titanate ceramics

  • Mitesh ChakrabortyEmail author
  • Vineet Kumar Rai
  • Kuntal Mitra
Article
  • 16 Downloads

Abstract

The ceramics of spinel zinc orthotitanate (SZT) and perovskite zinc metatitanate (PZT) sintered at \(800^{\circ }\hbox {C}\) have been prepared using the high-energy ball milling technique. The structural and optical characterisation of the prepared samples has been performed using X-ray diffraction and Fourier transformation of infrared (FT-IR) spectroscopy analysis. The measurements of frequency-dependent dielectric constant of the PZT and SZT ceramics sintered at \(800^{\circ }\hbox {C}\) have been performed in the \((50{-}600)^{\circ }\hbox {C}\) temperature range. Impedance spectroscopy studies have been reported for the prepared nanocrystalline ceramics. The empirical vibrational frequencies observed from the FT-IR spectra have been compared using the computational method of ORCA program package. Constraints for symmetry, bonds, angles or dihedral angles have not been applied in the geometry optimisation calculations. Hybrid three-parameter exchange-correlation functional of Becke, Lee, Yang, Parr with 20% amount of exact exchange and Ahlrichs triple-zeta valence (def2-TZVP) basis set with polarisation function have been investigated for all atoms without considering the relativistic effects.

Keywords

Crystals density functional theory dielectric relaxation impedance spectroscopy mechano-chemical synthesis 

PACS Nos

31 61 71 81 

Notes

Acknowledgements

The authors are grateful to the Science and Engineering Research Board (SERB), DST, New Delhi, India, for providing financial assistance in the form of a research project (EMR / 2014 / 001273).

References

  1. 1.
    G Prieto, A Martinez, R Murciano and A M Arribas, Appl. Catal. A Gen. 367, 146 (2009)CrossRefGoogle Scholar
  2. 2.
    S Kiatphuengporn, M Chareonpanich and J Limtrakul, Chem. Eng. J. 240, 527 (2014)CrossRefGoogle Scholar
  3. 3.
    R G Gordani, A Ghasemi and A Saidi, Ceram. Intern. 40, 4945 (2014)CrossRefGoogle Scholar
  4. 4.
    S A Maybodi, V Rezaei and Rastegarzadeh, Spectrochim. Acta 136, 832 (2015)CrossRefGoogle Scholar
  5. 5.
    C Tanggarnjanavalukul, W Donphai, T Witoon, M Chareonpanich and J Limtrakul, Chem. Eng. J. 262, 364 (2015)CrossRefGoogle Scholar
  6. 6.
    S Y Chang, H Y Chang, G I Chen, J G Chen, L Y Chai, S Wu and H T Fang, J. Alloys Compd. 354, 303 (2003)CrossRefGoogle Scholar
  7. 7.
    K S Manik, P Bose and K S Pradhan, Mater. Chem. Phys. 82, 837 (2003)CrossRefGoogle Scholar
  8. 8.
    G Akgul, J. Molec. Struct. 1037, 35 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    M L Levy, Compt. Rend. 105, 378 (1887)Google Scholar
  10. 10.
    M L Levy, Compt. Rend. 107, 421 (1888)Google Scholar
  11. 11.
    F H Dulin and D E Rase, J. Am. Ceram. Soc. 43, 125 (1960)CrossRefGoogle Scholar
  12. 12.
    S F Bartram and R A Slepetys, J. Am. Ceram. Soc. 44, 493 (1961)CrossRefGoogle Scholar
  13. 13.
    A Golovchanski, H T Kim and Y H Kim, J. Korean Phys. Soc. 32, 1167 (1998)Google Scholar
  14. 14.
    H T Kim, S H Kim and S Nahm, J. Am. Ceram. Soc. 82, 3043 (1999)CrossRefGoogle Scholar
  15. 15.
    H T Kim, S Nahm and J D Byun, J. Am. Ceram. Soc. 82, 3476 (1999)CrossRefGoogle Scholar
  16. 16.
    W Mojtahedi and J Abbasian, Energy Fuel 9, 429 (1995)CrossRefGoogle Scholar
  17. 17.
    H T Kim, J D Byun and Y Kim, Mater. Res. Bull. 33, 963 (1998)CrossRefGoogle Scholar
  18. 18.
    M Pineda, J L G Fierro, J M Palacios, C Cilleruelo, E Garcia and J V M Ibarra, Appl. Surf. Sci. 119, 1 (1997)ADSCrossRefGoogle Scholar
  19. 19.
    L Alonso, J M Palacios and R Moliner, Energy Fuel 15, 1396 (2001)CrossRefGoogle Scholar
  20. 20.
    K Jothimurugesan and S K Gangwal, Ind. Eng. Res. 37, 1929 (1998)CrossRefGoogle Scholar
  21. 21.
    R B Slimane and J Abbasian, Adv. Environ. Res. 4, 147 (2000)CrossRefGoogle Scholar
  22. 22.
    R B Rankin, A Campos, H Tian, R Siriwardane, A Roy, J James, J Spivey, D S Sholl and J K Johnson, J. Am. Ceram. Soc. 91, 584 (2008)CrossRefGoogle Scholar
  23. 23.
    Z Ali, S Ali, I Ahmad, I Khan and H A R Aliabad, Physica B 420, 54 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    J S Jang, P H Borse, J S Lee, K T Lim, O S Jung, E D Jeoung, J S Bae, M S Won and H G Kim, Bull Korean Chem. Soc. 30, 3021 (2009)CrossRefGoogle Scholar
  25. 25.
    K H Yoon, J Cho and D H Kang, Mater. Res. Bull. 34, 1451 (1999)CrossRefGoogle Scholar
  26. 26.
    K Sarkar, E V Braden, T Froschl, N Husing and P M Buschbaum, J. Mater. Chem. A 2, 15008 (2014)CrossRefGoogle Scholar
  27. 27.
    S Ayyed, H Abdelkefi, H Khamakhem and A Matoussi, J. Alloys Compd. 677, 185 (2016)CrossRefGoogle Scholar
  28. 28.
    K Wakino, T Nischicawa, Y Ishikawa and H Tamura, Br. Ceram. Trans. J. 89, 39 (1990)Google Scholar
  29. 29.
    H Sreemoolanadhan, M T Sebastian and P Mohanan, Mater. Res. Bull. 30, 653 (1995)CrossRefGoogle Scholar
  30. 30.
    H T Kim, J D Byun and Y Kim, Mater. Res. Bull. 33, 975 (1998)CrossRefGoogle Scholar
  31. 31.
    A Chaouchi, S d’Astorg, S Marinel and M Aliouat, Mater. Chem. Phys. 103, 106 (2007)CrossRefGoogle Scholar
  32. 32.
    M R Vaezi, A Kandjani, L Nikzad, N A Arefian, S Alibeigi, M Tabriz, S H Ghassem and J Samei, Mater. Sci. Pol. 25, 110 (2007)Google Scholar
  33. 33.
    L Hou, Y Hou, M K Zhu, J Tang, J Liu, H Wang and H Yan, Mater. Lett. 59, 197 (2005)CrossRefGoogle Scholar
  34. 34.
    P Vlazan, D H Ursu, C Irina-Moisescu, I Miron, P Sfirloaga and E Rusu, Mater. Charact. 101, 153 (2015)CrossRefGoogle Scholar
  35. 35.
    O Yamaguchi, M Morimi, H Kawabata and K Shimizu, J. Am. Ceram. Soc. 70, c97 (1987)Google Scholar
  36. 36.
    A Stoyanova, H Hitkova, A Bachvarova-Nedelcheva, R Iordanova, N Ivanova and M Sredkova, J. Chem. Technol. Metall. 48, 154 (2013)Google Scholar
  37. 37.
    B C Yadava, A Yadav, S Singh and K Singh, Sens. Actuat. B 177, 605 (2013)CrossRefGoogle Scholar
  38. 38.
    A Shalaby, A Bachvarova-Nedelcheva, R Iordanova, Y Dimitriev, A Stoyanova, H Hitkova, N Ivanova and M Sredkova, J. Optoelectron. Adv. Mater. 17, 248 (2015)Google Scholar
  39. 39.
    C Li, M Bando, M Nakamura, N Kimizuka and H Kito, Mater. Res. Bull. 35, 351 (2000)Google Scholar
  40. 40.
    S Sedpho, D Wongratanaphisan, P Mangkorntong, N Mangkorntong and S Choopun, J. Nat. Sci. 7, 99 (2008)Google Scholar
  41. 41.
    K Jothimurugesan and S K Gangwal, Ind. Eng. Chem. Res. 37, 1929 (1998)CrossRefGoogle Scholar
  42. 42.
    S K S Parasar, R N P Choudhary and B S Murthy,J. Appl. Phys. 94, 6091 (2003)ADSCrossRefGoogle Scholar
  43. 43.
    L B Kong, J M Zhu and W T Ok, J. Alloys. Compd. 236, 242 (2002)CrossRefGoogle Scholar
  44. 44.
    M Chakraborty, S Chaudhuri, V K Rai and V Mishra,J. Mater. Sci.: Mater. Electron. 27, 7478 (2016)Google Scholar
  45. 45.
    F Neese, Coord. Chem. Rev. 253, 526 (2009)CrossRefGoogle Scholar
  46. 46.
    F Neese and E I Solomon, Inorg. Chem. 37, 6568 (1998)CrossRefGoogle Scholar
  47. 47.
    M Chakraborty, V K Rai and V Mishra, Optik 127, 4333 (2016)ADSCrossRefGoogle Scholar
  48. 48.
    L Kathawate, S Sproules, O Pawar, G Markad, S Haram, V Puranik and S Gawali, J. Mol. Struct. 1048, 223 (2013)ADSCrossRefGoogle Scholar
  49. 49.
    N Smrecki, O Jovic, V Stilinovic, B Kukovec, M Dakovic and Z Popovic, Inorg. Chim. Acta 453, 95 (2016)CrossRefGoogle Scholar
  50. 50.
    P Ghosh, A Chowdhury, S Saha, M Ghosh, M Pal, N Murmu and P Banerjee, Inorg. Chim. Acta 429, 99 (2015)CrossRefGoogle Scholar
  51. 51.
    P Stoch, A Stoch, M Ciecinska, I Krakowiak and M Sitarz, J. Non Cryst. Solids 450, 48 (2016)ADSCrossRefGoogle Scholar
  52. 52.
    C Suryanarayana, Prog. Mater. Sci. 46, 1 (1998)CrossRefGoogle Scholar
  53. 53.
    N Pinna, Progr. Colloid Polym. Sci. 130, 29 (2005)Google Scholar
  54. 54.
    J Daniels, K H Hardtl and R Wernicke, Philips. Tech. Rev. 38, 73 (1978)ADSGoogle Scholar
  55. 55.
    W Heywang, J. Am. Ceram. Soc. 47, 484 (1964)CrossRefGoogle Scholar
  56. 56.
    J C Maxwell, Electricity and magnetism (Oxford University Press, London, 1970)Google Scholar
  57. 57.
    K W Wagner, Ann. Phys. 40, 818 (1993)Google Scholar
  58. 58.
    C G Koops, Phys. Rev. 83, 121 (1951)ADSCrossRefGoogle Scholar
  59. 59.
    M K Gergs, G A Gamal and M A Massaud, Ceram. Egypt. J. Solid. 30, 20 (2007).Google Scholar
  60. 60.
    M Kellati, S Sayouri, N El Moudden, M Elaatmani, A Kaal and M Taibi, Mater. Res. Bull. 39, 867 (2004)CrossRefGoogle Scholar
  61. 61.
    R Tickoo, R P Tandon, K K Bamzai and P N Kotru, Mater. Sci. Eng. B 103, 145 (2003)CrossRefGoogle Scholar
  62. 62.
    Z Gao, C Lu, Y Wang, S Yang, Y Yu and H He, Sci. Rep. 6, 24139 (2016)ADSCrossRefGoogle Scholar
  63. 63.
    B Tareev, Physics of dielectric materials (Mir Publishers, Moscow, 1979)Google Scholar
  64. 64.
    S K Barik, R N P Choudhary and A K Singh, Adv. Mater. Lett. 2, 419 (2011)CrossRefGoogle Scholar
  65. 65.
    P Dhak, D Dhak, M Das, K Pramanik and P Pramanik, Mater. Sci. Eng. B 164, 165 (2009)CrossRefGoogle Scholar
  66. 66.
    R Gerhardt, J. Phys. Chem. Solids 55, 1491 (1994)ADSCrossRefGoogle Scholar
  67. 67.
    S K S Parasar, R N P Choudhary and B S Murty, Mater. Sci. Eng. B 110, 58 (2004)CrossRefGoogle Scholar
  68. 68.
    J Portelles, N S Almodovar, J Fuentes, O Raymond, J Heiras and J M Siqueiros, J. Appl. Phys. 104, 073511 (2008)Google Scholar
  69. 69.
    Y S Chang, Y H Chang, I G Chen, G J Chen, Y L Chai, T H Fang and S Wu, Ceram. Intern. 30, 2183 (2004)CrossRefGoogle Scholar
  70. 70.
    E Barsoukov and J Ross Macdonald, Impedance spectroscopy theory, experiment and applications (Wiley Interscience, New York, 2005)CrossRefGoogle Scholar
  71. 71.
    A K Jonscher, Nature 267, 673 (1977)ADSCrossRefGoogle Scholar
  72. 72.
    S K S Parasar, S Chaudhuri, S N Singh and M Ghoranneviss, J. Theor. Appl. Phys. 7, 267 (2013)Google Scholar
  73. 73.
    L Y Zhu, G Yu, X Q Wang and D Hu, J. Colloid Interface Sci. 336, 438 (2009)ADSCrossRefGoogle Scholar
  74. 74.
    M Zheng, X Xing, J Deng, L Li, J Zhao, L Qiao and C Fang, J. Alloys Compd. 456, 353 (2007)CrossRefGoogle Scholar
  75. 75.
    R Hong, T Pan, J Qian and H Li, Chem. Eng. J. 119, 71 (2006).CrossRefGoogle Scholar
  76. 76.
    A Verma, M Kar and S A Agnihotry. Sol. Energy Mater. Sol. Cells 91, 1305 (2007)CrossRefGoogle Scholar
  77. 77.
    N Sijakovic-Vujicicic, M Gotić, S Musić, M Ivanda and S Popović, J. Sol-Gel Sci. Technol. 30, 5 (2004)CrossRefGoogle Scholar
  78. 78.
    F Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2, 73 (2012)Google Scholar
  79. 79.
    J Hao, G Li, Y Li and G Cui, Spectrochim. Acta 131, 102 (2014)CrossRefGoogle Scholar
  80. 80.
    M Nahass, A Ashour, A Atta, H Saad, A Hassanien, A Baradi and E Zaidia, Pramana – J. Phys. 88: 6 (2017)ADSCrossRefGoogle Scholar
  81. 81.
    C Lee, W Yang and R G Parr, Phys. Rev. B 37, 785 (1988)ADSCrossRefGoogle Scholar
  82. 82.
    F Weigend, Phys. Chem. Chem. Phys. 8, 1057 (2006)CrossRefGoogle Scholar
  83. 83.
    A D Becke, Phys. Rev. A 38, 3098 (1988)ADSCrossRefGoogle Scholar
  84. 84.
    M Chakraborty and V K Rai, Pramana – J. Phys. 89: 88 (2017)ADSCrossRefGoogle Scholar
  85. 85.
    S Sinnecker, L D Slep, E Bill and F Neese, Inorg. Chem. 44, 2245 (2005)CrossRefGoogle Scholar
  86. 86.
    A Klamt and G Schuurmann, J. Chem. Soc. Perkin Trans. 2, 799 (1993)CrossRefGoogle Scholar
  87. 87.
    W Han, T Liu, T Lovell and L Noodleman, J. Comput. Chem. 27, 1292 (2006)CrossRefGoogle Scholar
  88. 88.
    K H Hopmann, A Ghosh and L Noodleman, Inorg. Chem. 48, 9155 (2009)CrossRefGoogle Scholar
  89. 89.
    G M Sandala, K H Hopmann, A Ghosh and L Noodleman, J. Chem. Theory Comput. 7, 3232 (2011)CrossRefGoogle Scholar
  90. 90.
    M Papai and G Vanko, J. Chem. Theory Comput. 9, 5004 (2013)CrossRefGoogle Scholar
  91. 91.
    E F Pettersen, T D Goddard, C C Huang, G S Couch, D M Greenblatt, E C Meng and T E Ferrin, J. Comput. Chem. 25, 1605 (2004)CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  • Mitesh Chakraborty
    • 1
    Email author
  • Vineet Kumar Rai
    • 2
  • Kuntal Mitra
    • 3
  1. 1.Department of PhysicsSt. Xavier’s CollegeRanchiIndia
  2. 2.Laser and Spectroscopy Laboratory, Department of Applied PhysicsIndian Institute of Technology (Indian School of Mines)DhanbadIndia
  3. 3.Department of PhysicsNational Institute of TechnologyRourkelaIndia

Personalised recommendations