Investigation on the electrical and optical properties of some zinc titanate ceramics
- 16 Downloads
Abstract
The ceramics of spinel zinc orthotitanate (SZT) and perovskite zinc metatitanate (PZT) sintered at \(800^{\circ }\hbox {C}\) have been prepared using the high-energy ball milling technique. The structural and optical characterisation of the prepared samples has been performed using X-ray diffraction and Fourier transformation of infrared (FT-IR) spectroscopy analysis. The measurements of frequency-dependent dielectric constant of the PZT and SZT ceramics sintered at \(800^{\circ }\hbox {C}\) have been performed in the \((50{-}600)^{\circ }\hbox {C}\) temperature range. Impedance spectroscopy studies have been reported for the prepared nanocrystalline ceramics. The empirical vibrational frequencies observed from the FT-IR spectra have been compared using the computational method of ORCA program package. Constraints for symmetry, bonds, angles or dihedral angles have not been applied in the geometry optimisation calculations. Hybrid three-parameter exchange-correlation functional of Becke, Lee, Yang, Parr with 20% amount of exact exchange and Ahlrichs triple-zeta valence (def2-TZVP) basis set with polarisation function have been investigated for all atoms without considering the relativistic effects.
Keywords
Crystals density functional theory dielectric relaxation impedance spectroscopy mechano-chemical synthesisPACS Nos
31 61 71 81Notes
Acknowledgements
The authors are grateful to the Science and Engineering Research Board (SERB), DST, New Delhi, India, for providing financial assistance in the form of a research project (EMR / 2014 / 001273).
References
- 1.G Prieto, A Martinez, R Murciano and A M Arribas, Appl. Catal. A Gen. 367, 146 (2009)CrossRefGoogle Scholar
- 2.S Kiatphuengporn, M Chareonpanich and J Limtrakul, Chem. Eng. J. 240, 527 (2014)CrossRefGoogle Scholar
- 3.R G Gordani, A Ghasemi and A Saidi, Ceram. Intern. 40, 4945 (2014)CrossRefGoogle Scholar
- 4.S A Maybodi, V Rezaei and Rastegarzadeh, Spectrochim. Acta 136, 832 (2015)CrossRefGoogle Scholar
- 5.C Tanggarnjanavalukul, W Donphai, T Witoon, M Chareonpanich and J Limtrakul, Chem. Eng. J. 262, 364 (2015)CrossRefGoogle Scholar
- 6.S Y Chang, H Y Chang, G I Chen, J G Chen, L Y Chai, S Wu and H T Fang, J. Alloys Compd. 354, 303 (2003)CrossRefGoogle Scholar
- 7.K S Manik, P Bose and K S Pradhan, Mater. Chem. Phys. 82, 837 (2003)CrossRefGoogle Scholar
- 8.G Akgul, J. Molec. Struct. 1037, 35 (2013)ADSCrossRefGoogle Scholar
- 9.M L Levy, Compt. Rend. 105, 378 (1887)Google Scholar
- 10.M L Levy, Compt. Rend. 107, 421 (1888)Google Scholar
- 11.F H Dulin and D E Rase, J. Am. Ceram. Soc. 43, 125 (1960)CrossRefGoogle Scholar
- 12.S F Bartram and R A Slepetys, J. Am. Ceram. Soc. 44, 493 (1961)CrossRefGoogle Scholar
- 13.A Golovchanski, H T Kim and Y H Kim, J. Korean Phys. Soc. 32, 1167 (1998)Google Scholar
- 14.H T Kim, S H Kim and S Nahm, J. Am. Ceram. Soc. 82, 3043 (1999)CrossRefGoogle Scholar
- 15.H T Kim, S Nahm and J D Byun, J. Am. Ceram. Soc. 82, 3476 (1999)CrossRefGoogle Scholar
- 16.W Mojtahedi and J Abbasian, Energy Fuel 9, 429 (1995)CrossRefGoogle Scholar
- 17.H T Kim, J D Byun and Y Kim, Mater. Res. Bull. 33, 963 (1998)CrossRefGoogle Scholar
- 18.M Pineda, J L G Fierro, J M Palacios, C Cilleruelo, E Garcia and J V M Ibarra, Appl. Surf. Sci. 119, 1 (1997)ADSCrossRefGoogle Scholar
- 19.L Alonso, J M Palacios and R Moliner, Energy Fuel 15, 1396 (2001)CrossRefGoogle Scholar
- 20.K Jothimurugesan and S K Gangwal, Ind. Eng. Res. 37, 1929 (1998)CrossRefGoogle Scholar
- 21.R B Slimane and J Abbasian, Adv. Environ. Res. 4, 147 (2000)CrossRefGoogle Scholar
- 22.R B Rankin, A Campos, H Tian, R Siriwardane, A Roy, J James, J Spivey, D S Sholl and J K Johnson, J. Am. Ceram. Soc. 91, 584 (2008)CrossRefGoogle Scholar
- 23.Z Ali, S Ali, I Ahmad, I Khan and H A R Aliabad, Physica B 420, 54 (2013)ADSCrossRefGoogle Scholar
- 24.J S Jang, P H Borse, J S Lee, K T Lim, O S Jung, E D Jeoung, J S Bae, M S Won and H G Kim, Bull Korean Chem. Soc. 30, 3021 (2009)CrossRefGoogle Scholar
- 25.K H Yoon, J Cho and D H Kang, Mater. Res. Bull. 34, 1451 (1999)CrossRefGoogle Scholar
- 26.K Sarkar, E V Braden, T Froschl, N Husing and P M Buschbaum, J. Mater. Chem. A 2, 15008 (2014)CrossRefGoogle Scholar
- 27.S Ayyed, H Abdelkefi, H Khamakhem and A Matoussi, J. Alloys Compd. 677, 185 (2016)CrossRefGoogle Scholar
- 28.K Wakino, T Nischicawa, Y Ishikawa and H Tamura, Br. Ceram. Trans. J. 89, 39 (1990)Google Scholar
- 29.H Sreemoolanadhan, M T Sebastian and P Mohanan, Mater. Res. Bull. 30, 653 (1995)CrossRefGoogle Scholar
- 30.H T Kim, J D Byun and Y Kim, Mater. Res. Bull. 33, 975 (1998)CrossRefGoogle Scholar
- 31.A Chaouchi, S d’Astorg, S Marinel and M Aliouat, Mater. Chem. Phys. 103, 106 (2007)CrossRefGoogle Scholar
- 32.M R Vaezi, A Kandjani, L Nikzad, N A Arefian, S Alibeigi, M Tabriz, S H Ghassem and J Samei, Mater. Sci. Pol. 25, 110 (2007)Google Scholar
- 33.L Hou, Y Hou, M K Zhu, J Tang, J Liu, H Wang and H Yan, Mater. Lett. 59, 197 (2005)CrossRefGoogle Scholar
- 34.P Vlazan, D H Ursu, C Irina-Moisescu, I Miron, P Sfirloaga and E Rusu, Mater. Charact. 101, 153 (2015)CrossRefGoogle Scholar
- 35.O Yamaguchi, M Morimi, H Kawabata and K Shimizu, J. Am. Ceram. Soc. 70, c97 (1987)Google Scholar
- 36.A Stoyanova, H Hitkova, A Bachvarova-Nedelcheva, R Iordanova, N Ivanova and M Sredkova, J. Chem. Technol. Metall. 48, 154 (2013)Google Scholar
- 37.B C Yadava, A Yadav, S Singh and K Singh, Sens. Actuat. B 177, 605 (2013)CrossRefGoogle Scholar
- 38.A Shalaby, A Bachvarova-Nedelcheva, R Iordanova, Y Dimitriev, A Stoyanova, H Hitkova, N Ivanova and M Sredkova, J. Optoelectron. Adv. Mater. 17, 248 (2015)Google Scholar
- 39.C Li, M Bando, M Nakamura, N Kimizuka and H Kito, Mater. Res. Bull. 35, 351 (2000)Google Scholar
- 40.S Sedpho, D Wongratanaphisan, P Mangkorntong, N Mangkorntong and S Choopun, J. Nat. Sci. 7, 99 (2008)Google Scholar
- 41.K Jothimurugesan and S K Gangwal, Ind. Eng. Chem. Res. 37, 1929 (1998)CrossRefGoogle Scholar
- 42.S K S Parasar, R N P Choudhary and B S Murthy,J. Appl. Phys. 94, 6091 (2003)ADSCrossRefGoogle Scholar
- 43.L B Kong, J M Zhu and W T Ok, J. Alloys. Compd. 236, 242 (2002)CrossRefGoogle Scholar
- 44.M Chakraborty, S Chaudhuri, V K Rai and V Mishra,J. Mater. Sci.: Mater. Electron. 27, 7478 (2016)Google Scholar
- 45.F Neese, Coord. Chem. Rev. 253, 526 (2009)CrossRefGoogle Scholar
- 46.F Neese and E I Solomon, Inorg. Chem. 37, 6568 (1998)CrossRefGoogle Scholar
- 47.M Chakraborty, V K Rai and V Mishra, Optik 127, 4333 (2016)ADSCrossRefGoogle Scholar
- 48.L Kathawate, S Sproules, O Pawar, G Markad, S Haram, V Puranik and S Gawali, J. Mol. Struct. 1048, 223 (2013)ADSCrossRefGoogle Scholar
- 49.N Smrecki, O Jovic, V Stilinovic, B Kukovec, M Dakovic and Z Popovic, Inorg. Chim. Acta 453, 95 (2016)CrossRefGoogle Scholar
- 50.P Ghosh, A Chowdhury, S Saha, M Ghosh, M Pal, N Murmu and P Banerjee, Inorg. Chim. Acta 429, 99 (2015)CrossRefGoogle Scholar
- 51.P Stoch, A Stoch, M Ciecinska, I Krakowiak and M Sitarz, J. Non Cryst. Solids 450, 48 (2016)ADSCrossRefGoogle Scholar
- 52.C Suryanarayana, Prog. Mater. Sci. 46, 1 (1998)CrossRefGoogle Scholar
- 53.N Pinna, Progr. Colloid Polym. Sci. 130, 29 (2005)Google Scholar
- 54.J Daniels, K H Hardtl and R Wernicke, Philips. Tech. Rev. 38, 73 (1978)ADSGoogle Scholar
- 55.W Heywang, J. Am. Ceram. Soc. 47, 484 (1964)CrossRefGoogle Scholar
- 56.J C Maxwell, Electricity and magnetism (Oxford University Press, London, 1970)Google Scholar
- 57.K W Wagner, Ann. Phys. 40, 818 (1993)Google Scholar
- 58.C G Koops, Phys. Rev. 83, 121 (1951)ADSCrossRefGoogle Scholar
- 59.M K Gergs, G A Gamal and M A Massaud, Ceram. Egypt. J. Solid. 30, 20 (2007).Google Scholar
- 60.M Kellati, S Sayouri, N El Moudden, M Elaatmani, A Kaal and M Taibi, Mater. Res. Bull. 39, 867 (2004)CrossRefGoogle Scholar
- 61.R Tickoo, R P Tandon, K K Bamzai and P N Kotru, Mater. Sci. Eng. B 103, 145 (2003)CrossRefGoogle Scholar
- 62.Z Gao, C Lu, Y Wang, S Yang, Y Yu and H He, Sci. Rep. 6, 24139 (2016)ADSCrossRefGoogle Scholar
- 63.B Tareev, Physics of dielectric materials (Mir Publishers, Moscow, 1979)Google Scholar
- 64.S K Barik, R N P Choudhary and A K Singh, Adv. Mater. Lett. 2, 419 (2011)CrossRefGoogle Scholar
- 65.P Dhak, D Dhak, M Das, K Pramanik and P Pramanik, Mater. Sci. Eng. B 164, 165 (2009)CrossRefGoogle Scholar
- 66.R Gerhardt, J. Phys. Chem. Solids 55, 1491 (1994)ADSCrossRefGoogle Scholar
- 67.S K S Parasar, R N P Choudhary and B S Murty, Mater. Sci. Eng. B 110, 58 (2004)CrossRefGoogle Scholar
- 68.J Portelles, N S Almodovar, J Fuentes, O Raymond, J Heiras and J M Siqueiros, J. Appl. Phys. 104, 073511 (2008)Google Scholar
- 69.Y S Chang, Y H Chang, I G Chen, G J Chen, Y L Chai, T H Fang and S Wu, Ceram. Intern. 30, 2183 (2004)CrossRefGoogle Scholar
- 70.E Barsoukov and J Ross Macdonald, Impedance spectroscopy theory, experiment and applications (Wiley Interscience, New York, 2005)CrossRefGoogle Scholar
- 71.A K Jonscher, Nature 267, 673 (1977)ADSCrossRefGoogle Scholar
- 72.S K S Parasar, S Chaudhuri, S N Singh and M Ghoranneviss, J. Theor. Appl. Phys. 7, 267 (2013)Google Scholar
- 73.L Y Zhu, G Yu, X Q Wang and D Hu, J. Colloid Interface Sci. 336, 438 (2009)ADSCrossRefGoogle Scholar
- 74.M Zheng, X Xing, J Deng, L Li, J Zhao, L Qiao and C Fang, J. Alloys Compd. 456, 353 (2007)CrossRefGoogle Scholar
- 75.R Hong, T Pan, J Qian and H Li, Chem. Eng. J. 119, 71 (2006).CrossRefGoogle Scholar
- 76.A Verma, M Kar and S A Agnihotry. Sol. Energy Mater. Sol. Cells 91, 1305 (2007)CrossRefGoogle Scholar
- 77.N Sijakovic-Vujicicic, M Gotić, S Musić, M Ivanda and S Popović, J. Sol-Gel Sci. Technol. 30, 5 (2004)CrossRefGoogle Scholar
- 78.F Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2, 73 (2012)Google Scholar
- 79.J Hao, G Li, Y Li and G Cui, Spectrochim. Acta 131, 102 (2014)CrossRefGoogle Scholar
- 80.M Nahass, A Ashour, A Atta, H Saad, A Hassanien, A Baradi and E Zaidia, Pramana – J. Phys. 88: 6 (2017)ADSCrossRefGoogle Scholar
- 81.C Lee, W Yang and R G Parr, Phys. Rev. B 37, 785 (1988)ADSCrossRefGoogle Scholar
- 82.F Weigend, Phys. Chem. Chem. Phys. 8, 1057 (2006)CrossRefGoogle Scholar
- 83.A D Becke, Phys. Rev. A 38, 3098 (1988)ADSCrossRefGoogle Scholar
- 84.M Chakraborty and V K Rai, Pramana – J. Phys. 89: 88 (2017)ADSCrossRefGoogle Scholar
- 85.S Sinnecker, L D Slep, E Bill and F Neese, Inorg. Chem. 44, 2245 (2005)CrossRefGoogle Scholar
- 86.A Klamt and G Schuurmann, J. Chem. Soc. Perkin Trans. 2, 799 (1993)CrossRefGoogle Scholar
- 87.W Han, T Liu, T Lovell and L Noodleman, J. Comput. Chem. 27, 1292 (2006)CrossRefGoogle Scholar
- 88.K H Hopmann, A Ghosh and L Noodleman, Inorg. Chem. 48, 9155 (2009)CrossRefGoogle Scholar
- 89.G M Sandala, K H Hopmann, A Ghosh and L Noodleman, J. Chem. Theory Comput. 7, 3232 (2011)CrossRefGoogle Scholar
- 90.M Papai and G Vanko, J. Chem. Theory Comput. 9, 5004 (2013)CrossRefGoogle Scholar
- 91.E F Pettersen, T D Goddard, C C Huang, G S Couch, D M Greenblatt, E C Meng and T E Ferrin, J. Comput. Chem. 25, 1605 (2004)CrossRefGoogle Scholar