Advertisement

Pramana

, 92:38 | Cite as

Analytical approaches to space- and time-fractional coupled Burgers’ equations

  • Hoda F Ahmed
  • M S M BahgatEmail author
  • Mofida Zaki
Article
  • 63 Downloads

Abstract

We solve the one- and two-dimensional fractional coupled Burgers’ equations (FCBEs) by three different methods. The proposed methods are the Laplace–Adomian decomposition method (LADM), the Laplace-variational iteration method (LVIM) and the reduced differential transform method (RDTM). The solutions are obtained as rapidly convergent series with simply calculable terms. Numerical studies of the application of these approaches for a number of sample problems are given and are illustrated graphically. With these methods, it is possible to investigate the nature of solutions when the fractional derivative parameters are changed. The numerical results reveal the effectiveness and the correctness of the proposed methods.

Keywords

Laplace–Adomian decomposition method Laplace-variational iteration method reduced differential transform method Lagrange multiplier Caputo fractional derivative Burgers’ equations 

PACS Nos

02.60.–x 02.30.Jr 02.30.Mv 

References

  1. 1.
    W M Moslem, R Sabry and Z Kuznetsov, Chaos Solitons Fractals 36, 628 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    M P Bonkile, A Awasthi, C Lakshmi, V Mukundan and V S Aswin, Pramana — J. Phys. 90: 69 (2018)ADSCrossRefGoogle Scholar
  3. 3.
    M M Rashidi and E Erfani, Comput. Phys. Commun. 180, 1539 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    S Abbasbandy and M T Darvishi, Appl. Math. Comput. 170, 95 (2005)MathSciNetGoogle Scholar
  5. 5.
    A Karbalaie, M M Montazeri, M Shabani and B E Erlandsson, WSEAS Trans. Math. 13, 992 (2014)Google Scholar
  6. 6.
    M Dehghan, A Hamidi and M Shakourifar, Appl. Math. Comput. 189, 1034 ( 2007)MathSciNetGoogle Scholar
  7. 7.
    J Zhang and G Yan, Physica A 387, 4771 ( 2008)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Y Chen and H-L An, Appl. Math. Comput. 200, 87 (2008)MathSciNetGoogle Scholar
  9. 9.
    H Zhu, H Shu and M Ding, Comput. Math. Appl. 60, 840 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    B Inan and A R Bahadir, Pramana — J. Phys. 81, 547 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    M Khan, Alex. Eng. J. 53, 485 (2014)CrossRefGoogle Scholar
  12. 12.
    H Bateman, Mon. Weather Rev. 43, 163 (1915)ADSCrossRefGoogle Scholar
  13. 13.
    J M Burgers, Adv. Appl. Mech. 1, 171 (1948)CrossRefGoogle Scholar
  14. 14.
    P D Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves (SIAM, University City Science Center, Philadelphia, PA, 1973)Google Scholar
  15. 15.
    K B Oldham and J Spanier, The fractional calculus (Academic Press, New York, 1974)zbMATHGoogle Scholar
  16. 16.
    L Debnath, J. Frac. Cal. Appl. Anal. 6(2), 119 (2003)Google Scholar
  17. 17.
    J Sabatier, O P Agrawal and J Machado, Advances in fractional calculus: Theoretical developments and applications in physics and engineering (Springer, Dordrecht, 2007)CrossRefGoogle Scholar
  18. 18.
    R Garra, Phys. Rev. E 84(3), 1 (2011)CrossRefGoogle Scholar
  19. 19.
    Y M Jiang, T T Wei and X W Zhou, J. Diff. Eqns 252(2), 1934 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Mustafa Inc, J. Math. Anal. Appl. 345, 476 (2008)MathSciNetCrossRefGoogle Scholar
  21. 21.
    M Inc, Phys. Lett. A 372, 356 (2008)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    M Mirzazadeh, Pramana — J. Phys. 86(5), 957 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    S Saha Ray, Model Simul. Eng. 2014, 1(2014)Google Scholar
  24. 24.
    S A Khuri, J. Math. Appl. 4, 141 (2001)CrossRefGoogle Scholar
  25. 25.
    S A Khuri, Appl. Math. Comput. 147, 131 (2004)MathSciNetGoogle Scholar
  26. 26.
    A M Wazwaz, Appl. Math. Comput. 216, 1304 (2010)MathSciNetGoogle Scholar
  27. 27.
    Y Khan and N Faraz, J. King Saud Univ. Sci. 23, 115 (2011)CrossRefGoogle Scholar
  28. 28.
    H Jafari, M Nazari, D Baleanu and C M Khalique, J. Comput. Math. Appl. 66, 838 (2013)CrossRefGoogle Scholar
  29. 29.
    G-C Wu and D Baleanu, Adv. Diff. Eqns. 2013, 18 (2013)CrossRefGoogle Scholar
  30. 30.
    J K Zhou, Differential transform and its applications for electrical circuits (Huazhon University Press, Wuhan, China, 1986)Google Scholar
  31. 31.
    M Sohail and S T Mohyud-Din, Int. J. Mod. Math. Sci. 4(1), 21 (2012)Google Scholar
  32. 32.
    M A Ramadan and A R Hadhoud, Amer. J. Math. Comput. Model. 2(2), 39 (2017)Google Scholar
  33. 33.
    K S Miller and B Ross, An introduction to the fractional calculus and fractional differential equations (John Wiley and Sons, Inc., Canada, 1993)zbMATHGoogle Scholar
  34. 34.
    C Li, D Qian and Y Q Chen, Disc. Dyn. Nat. Soc. 2011, 1 (2011)Google Scholar
  35. 35.
    G Adomian and R Rach, Comput. Math. Appl. 24(11), 61 (1992)MathSciNetCrossRefGoogle Scholar
  36. 36.
    K Abbaoui and Y Cherruault, Comput. Math. Appl. 29, 103 (1995)MathSciNetCrossRefGoogle Scholar
  37. 37.
    B Babolian and J Biazaar, Appl. Math. Comput. 130, 383 (2002)MathSciNetGoogle Scholar
  38. 38.
    I L El-Kalla, Appl. Math. E-Notes 7, 214 (2007)MathSciNetGoogle Scholar
  39. 39.
    Z M Obibat, Math. Comput. Model. 51, 1181 (2010)CrossRefGoogle Scholar
  40. 40.
    H A Zedan, S S H Tantawy and Y M Sayed, J. Fract. Calc. Appl. 5(3s), 1 (2014)MathSciNetGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Mathematics Department, Faculty of ScienceEl-Minia UniversityEl-MiniaEgypt

Personalised recommendations