Skip to main content
Log in

The FDTD simulation of microring feedback bend-based coupling resonator system for electromagnetically-induced transparency-like effect

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

A microring feedback bend-based coupling resonant system is proposed and is finite difference time domain (FDTD)-simulated to generate electromagnetically-induced transparency (EIT)-like transmission and mode distribution. The coupling between the cross-section of the waveguides gives rise to EIT-like spectrum. Most of the mode field energy is concentrated in the coupling region of the feedback bend. The full-width at half-maximum (FWHM) can be tuned by controlling the gap parameter between two feedback bends. The device enables integration with some photonic devices on a chip and shows great promise in applications such as fast–slow light and optical filters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J Kedia and N Gupta, Optik 126, 5641 (2015)

    Article  ADS  Google Scholar 

  2. E A J Marcatili, Syst. Tech. J. 48, 2071 (1969)

    Article  Google Scholar 

  3. C Y Chao, S Ashkenazi, S W Huang, M O’Donnell and L J Guo, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 54, 957 (2007)

    Article  Google Scholar 

  4. V B Braginsky, M L Gorodetsky and V S IIchenko, Phys. Lett. A 137, 393 (1989)

    Article  ADS  Google Scholar 

  5. S L McCall, A F J Levi, R E Slusher, S J Pearton and R A Logan, Appl. Phys. Lett. 60, 289 (1992)

    Article  ADS  Google Scholar 

  6. L F Stokes, M Chodorow and H J Shaw, Opt. Lett. 7, 288 (1982)

    Article  ADS  Google Scholar 

  7. A Yariv, Y Xu, R K Lee and A Scherer, Opt. Lett. 24, 711 (1999)

    Article  ADS  Google Scholar 

  8. Q F Xu, J Shakya and M Lipson, Opt. Lett. 14, 6463 (2006)

    Google Scholar 

  9. S E Harris, J E Field and A Imamoglu, Phys. Rev. Lett. 64, 1107 (1990)

    Article  ADS  Google Scholar 

  10. D D Smith, H Chang, K A Fuller, A T Rosenberger and R W Boyd, Phys. Rev. A 69, 063804 (2004)

    Article  ADS  Google Scholar 

  11. G Y Li, X S Jiang, S Y Hua, Y C Qin and M Xiao, Appl. Phys. Lett. 109, 261106 (2016)

    Article  ADS  Google Scholar 

  12. K Totsuka, N Kobayashi and M Tomita, Phys. Rev. Lett. 98, 213904 (2007)

    Article  ADS  Google Scholar 

  13. J K S Poon, L Zhu, G A DeRose and A Yariv, Opt. Lett. 31, 456 (2006)

    Article  ADS  Google Scholar 

  14. F N Xia, L Sekaric and Y Vlasov, Nat. Photon. 1, 65 (2007)

    Article  ADS  Google Scholar 

  15. Y P Xu, L Y Ren, C J Ma, Y L Wang, J Liang and E S Qu, J. Mod. Opt. 61, 1109 (2014)

    Article  ADS  Google Scholar 

  16. Y Long, Y Wang, X Hu, M X Ji, L Shen, A D Wang and J Wang, Opt. Lett. 42, 799 (2017)

    Article  ADS  Google Scholar 

  17. W T Chen, C J Chen, P C Wu, S L Sun, L Zhou, G -Y Guo, C T Hsiao, K-Y Yang, N I Zheludev and D P Tsai, Opt. Exp. 19, 12837 (2011)

    Article  ADS  Google Scholar 

  18. P C Wu, W T Chen, K -Y Yang, C T Hsiao, G Sun, A Q Liu, N I Zheludev and D P Tsai, Nanophotonics 1, 131 (2012)

    Article  ADS  Google Scholar 

  19. P C Wu, W L Hsu, W T Chen, Y W Huang, C Y Liao, A Q Liu, N I Zheludev, G Sun and D P Tsai, Sci. Rep. 5, 9726 (2015)

    Article  Google Scholar 

  20. Y J Hsu, B H Cheng, Y Lai and D P Tsai, IEEE J. Quantum Electron. 21, 4600506 (2015)

    Google Scholar 

  21. N H Fouad, A O Zaki, D C Zografopoulos, R Beccherelli and M A Swillama, \(J\). Nanophoton. 11, 016014 (2017)

    Article  Google Scholar 

  22. K S Yee, IEEE Trans. Antenn. Propag. 14, 302 (1966)

    Article  ADS  Google Scholar 

  23. Z Zhang, G I Ng, T Hu, H Qiu, X Guo, M S Rouifed, C Liu and H Wang, Opt. Exp. 24, 25665 (2016)

    Article  ADS  Google Scholar 

  24. C A Ramos, F Morichetti, A O Moñux, I M Fernández, M J Strain and A Melloni, IEEE Photon. Technol. Lett. 26, 929 (2014)

    Article  Google Scholar 

  25. Z Zhang, G I Ng, T Hu, H Qiu, X Guo, W Wang, M S Rouifed, C Liu and H Wang, Appl. Phys. Lett. 111, 081105 (2017)

    Article  ADS  Google Scholar 

  26. A Lovera, B Gallinet, P Nordlander and O J F Martin, ACS Nano 7, 4527 (2013)

    Article  Google Scholar 

  27. D D Smith and H Chang, J. Mod. Opt. 51, 2503 (2004)

    ADS  Google Scholar 

  28. C Y Zhao, Pramana – J. Phys. 86, 1343 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Number 11504074) and the State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Shanxi, China (Grant Number KF201801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Y Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C.Y., Zhang, L. & Zhang, C.M. The FDTD simulation of microring feedback bend-based coupling resonator system for electromagnetically-induced transparency-like effect. Pramana - J Phys 92, 37 (2019). https://doi.org/10.1007/s12043-018-1692-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-018-1692-0

Keywords

PACS Nos

Navigation