Advertisement

Pramana

, 92:37 | Cite as

The FDTD simulation of microring feedback bend-based coupling resonator system for electromagnetically-induced transparency-like effect

  • C Y ZhaoEmail author
  • L Zhang
  • C M Zhang
Article
  • 9 Downloads

Abstract

A microring feedback bend-based coupling resonant system is proposed and is finite difference time domain (FDTD)-simulated to generate electromagnetically-induced transparency (EIT)-like transmission and mode distribution. The coupling between the cross-section of the waveguides gives rise to EIT-like spectrum. Most of the mode field energy is concentrated in the coupling region of the feedback bend. The full-width at half-maximum (FWHM) can be tuned by controlling the gap parameter between two feedback bends. The device enables integration with some photonic devices on a chip and shows great promise in applications such as fast–slow light and optical filters.

Keywords

Integrated optics microring resonators electromagnetically-induced transparency-like effect finite difference time domain 

PACS Nos

42.50.Gy 42.82.Et 02.70Bf 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Number 11504074) and the State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Shanxi, China (Grant Number KF201801).

References

  1. 1.
    J Kedia and N Gupta, Optik 126, 5641 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    E A J Marcatili, Syst. Tech. J. 48, 2071 (1969)CrossRefGoogle Scholar
  3. 3.
    C Y Chao, S Ashkenazi, S W Huang, M O’Donnell and L J Guo, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 54, 957 (2007)CrossRefGoogle Scholar
  4. 4.
    V B Braginsky, M L Gorodetsky and V S IIchenko, Phys. Lett. A 137, 393 (1989)ADSCrossRefGoogle Scholar
  5. 5.
    S L McCall, A F J Levi, R E Slusher, S J Pearton and R A Logan, Appl. Phys. Lett. 60, 289 (1992)ADSCrossRefGoogle Scholar
  6. 6.
    L F Stokes, M Chodorow and H J Shaw, Opt. Lett. 7, 288 (1982)ADSCrossRefGoogle Scholar
  7. 7.
    A Yariv, Y Xu, R K Lee and A Scherer, Opt. Lett. 24, 711 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    Q F Xu, J Shakya and M Lipson, Opt. Lett. 14, 6463 (2006)Google Scholar
  9. 9.
    S E Harris, J E Field and A Imamoglu, Phys. Rev. Lett. 64, 1107 (1990)ADSCrossRefGoogle Scholar
  10. 10.
    D D Smith, H Chang, K A Fuller, A T Rosenberger and R W Boyd, Phys. Rev. A 69, 063804 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    G Y Li, X S Jiang, S Y Hua, Y C Qin and M Xiao, Appl. Phys. Lett. 109, 261106 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    K Totsuka, N Kobayashi and M Tomita, Phys. Rev. Lett. 98, 213904 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    J K S Poon, L Zhu, G A DeRose and A Yariv, Opt. Lett. 31, 456 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    F N Xia, L Sekaric and Y Vlasov, Nat. Photon. 1, 65 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    Y P Xu, L Y Ren, C J Ma, Y L Wang, J Liang and E S Qu, J. Mod. Opt. 61, 1109 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    Y Long, Y Wang, X Hu, M X Ji, L Shen, A D Wang and J Wang, Opt. Lett. 42, 799 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    W T Chen, C J Chen, P C Wu, S L Sun, L Zhou, G -Y Guo, C T Hsiao, K-Y Yang, N I Zheludev and D P Tsai, Opt. Exp. 19, 12837 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    P C Wu, W T Chen, K -Y Yang, C T Hsiao, G Sun, A Q Liu, N I Zheludev and D P Tsai, Nanophotonics 1, 131 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    P C Wu, W L Hsu, W T Chen, Y W Huang, C Y Liao, A Q Liu, N I Zheludev, G Sun and D P Tsai, Sci. Rep. 5, 9726 (2015)CrossRefGoogle Scholar
  20. 20.
    Y J Hsu, B H Cheng, Y Lai and D P Tsai, IEEE J. Quantum Electron. 21, 4600506 (2015)Google Scholar
  21. 21.
    N H Fouad, A O Zaki, D C Zografopoulos, R Beccherelli and M A Swillama, \(J\). Nanophoton. 11, 016014 (2017)CrossRefGoogle Scholar
  22. 22.
    K S Yee, IEEE Trans. Antenn. Propag. 14, 302 (1966)ADSCrossRefGoogle Scholar
  23. 23.
    Z Zhang, G I Ng, T Hu, H Qiu, X Guo, M S Rouifed, C Liu and H Wang, Opt. Exp. 24, 25665 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    C A Ramos, F Morichetti, A O Moñux, I M Fernández, M J Strain and A Melloni, IEEE Photon. Technol. Lett. 26, 929 (2014)CrossRefGoogle Scholar
  25. 25.
    Z Zhang, G I Ng, T Hu, H Qiu, X Guo, W Wang, M S Rouifed, C Liu and H Wang, Appl. Phys. Lett. 111, 081105 (2017)ADSCrossRefGoogle Scholar
  26. 26.
    A Lovera, B Gallinet, P Nordlander and O J F Martin, ACS Nano 7, 4527 (2013)CrossRefGoogle Scholar
  27. 27.
    D D Smith and H Chang, J. Mod. Opt. 51, 2503 (2004)ADSGoogle Scholar
  28. 28.
    C Y Zhao, Pramana – J. Phys. 86, 1343 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.College of ScienceHangzhou Dianzi UniversityZhejiangChina
  2. 2.State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-ElectronicsShanxi UniversityTaiyuanChina
  3. 3.Nokia Solutions and NetworksHangzhouChina

Personalised recommendations