Advertisement

Pramana

, 92:19 | Cite as

Fractional-order memristor-based chaotic system with a stable equilibrium point, its fractional-order PI-based sliding mode control and switching synchronisation

  • Pankaj PrakashEmail author
  • Jay Prakash Singh
  • Binoy Krishna Roy
Article
  • 14 Downloads

Abstract

In this paper, we discuss a new fractional-order memristor-based three-dimensional chaotic system with a stable equilibrium point. The proposed system belongs to the category of hidden attractors dynamical system. The system is new in the sense that it is a fractional-order memristor-based chaotic system and exhibits hidden attractors. The chaotic behaviour of the system is accessed by various numerical techniques such as Lyapunov exponents, bifurcation diagrams, instantaneous phase plot, attractor analyses and frequency spectrum plots. A fractional-order proportional integral (PI)-based sliding mode control is designed for chaos suppression of the proposed system. Further, the switching synchronisation of the new system in the form of the master and the slave systems is presented.

Keywords

Chaotic behaviour hidden attractors fractional order memristor-based chaotic system fractional-order integral sliding mode controller switching synchronisation 

PACS No

05.10.−a 

References

  1. 1.
    D Cafagna, IEEE Ind. Electron. Mag. 1, 35 (2007)CrossRefGoogle Scholar
  2. 2.
    R Hilfer (ed), Applications of fractional calculus in physics (World Scientific, New Jersey, 2001)zbMATHGoogle Scholar
  3. 3.
    W Deng and J Lü, Chaos 16, 043120 (2006)Google Scholar
  4. 4.
    D Cafagna and G Grassi, Int. J. Bifurc. Chaos 19, 339 (2009)CrossRefGoogle Scholar
  5. 5.
    C P Li, W H Deng and D Xu, Phys. A: Stat. Mech. Appl. 360, 171 (2006)CrossRefGoogle Scholar
  6. 6.
    D Cafagna and G Grassi, Int. J. Bifurc. Chaos 18, 1845 (2008)CrossRefGoogle Scholar
  7. 7.
    J G Lu and G Chen, Chaos Solitons Fractals 27, 685 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    X Wu and Y Lu, Nonlinear Dyn. 57, 25 (2009)CrossRefGoogle Scholar
  9. 9.
    K Rajagopal, L Guessas, A Karthikeyan, A Srinivasan and G Adam, Complexity 2017, 1 (2017)Google Scholar
  10. 10.
    S Westerlund, Phys. Scr. 43, 174 (1991)ADSCrossRefGoogle Scholar
  11. 11.
    V Pham, S Vaidyanathan, C K Volos, A T Azar, T M Hoang and V Van Yem, Fractional order control synchronization of chaotic systems (Springer, 2017) Vol. 688, p. 449Google Scholar
  12. 12.
    Y Lin, C Wang, H He and L L Zhou, Pramana – J. Phys. 86, 801 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    P Zhou and K Huang, Commun. Nonlinear Sci. Numer. Simul. 19, 2005 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    H Li, X Liao and M Luo, Nonlinear Dyn. 68, 137 (2012)CrossRefGoogle Scholar
  15. 15.
    L O Chua, IEEE Trans. Circuit Theory 18, 507 (1971)CrossRefGoogle Scholar
  16. 16.
    D B Strukov, G S Snider, D R Stewart and R S Williams, Nature 453, 80 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    B Muthuswamy, Int. J. Bifurc. Chaos 20, 1335 (2010)CrossRefGoogle Scholar
  18. 18.
    K B Oldham and J Spanier, The fractional calculus: Theory and applications of differentiation and integration to arbitrary order (Elsevier, Amsterdam, 1974)zbMATHGoogle Scholar
  19. 19.
    I Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications (Academic Press, Cambridge, 1998)zbMATHGoogle Scholar
  20. 20.
    L Zhong, B Bo-Cheng and X Jian-Ping, Acta Phys. Sin. 59, 3785 (2010)Google Scholar
  21. 21.
    A Wolf, J B Swift, H L Swinney and J A Vastano, Physica D 16, 285 (1985).ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    I Petras, Fractional-order nonlinear systems: Modeling, analysis and simulation (Springer Science & Business Media, Berlin, 2011)CrossRefGoogle Scholar
  23. 23.
    M S Tavazoei and M Haeri, Physica D 237, 2628 (2008)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    M S Tavazoei and M Haeri, Phys. Lett. A 367, 102 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    V I Utkin, IEEE Trans. Ind. Electron. 40, 23 (1993)CrossRefGoogle Scholar
  26. 26.
    Y Li, Y Q Chen and I Podlubny, Comput. Math. Appl. 59, 1810 (2010)MathSciNetCrossRefGoogle Scholar
  27. 27.
    D Qi, D Ding and Q Wang, IET Control Theory Appl. 9, 681 (2015)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Z Wang, J Yuan and J Wei, Optik 137, 85 (2017)ADSCrossRefGoogle Scholar
  29. 29.
    S Mobayen and D Baleanu, Nonlinear Dyn. 83, 1557 (2016)CrossRefGoogle Scholar
  30. 30.
    P P Singh, J P Singh and B K Roy, Chaos Solitons Fractals 69, 31 (2014)ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    M A Kahn and S Poria, Pramana – J. Phys. 81, 395 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    P P Singh, J P Singh and B K Roy, IETE J. Res. 63, 853 (2017)CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2019

Authors and Affiliations

  1. 1.Department of Electrical EngineeringNational Institute of Technology, SilcharSilcharIndia

Personalised recommendations