, 92:11 | Cite as

Nonlinear process-induced spectral changes in hydrogenated amorphous silicon core optical fibre

  • Shi-Han Yang
  • Min-Hui Jin
  • Jian-Wei WuEmail author


In this paper, the spectral properties of temporal double pulses centred at the same central wavelength and two different central wavelengths are numerically presented based on hydrogenated amorphous silicon core optical fibre. In order to characterise the output spectra of double pulses, the group velocity dispersion and various nonlinear processes including self-phase modulation, cross-phase modulation, two-photon absorption, free carrier absorption and free carrier dispersion are considered in the theoretical model. Numerical results show that, under fixed fibre length condition, the widths of the outcome spectra are strongly dependent on the delay times, peak powers and initial chirps of input double pulses, i.e. widths of the output spectra are proportional to the launched peak powers, and the delay times control the separation between two pulses, resulting in the spectral change within a proper delay time, and the spectral widths are compressed or extended by judiciously adjusting the initial chirps imposed on the input pulses.


Nonlinear optics hydrogenated amorphous silicon optical fibre nonlinear processes optical spectrum 


42.65.Wi 42.65.−k 42.65.Jx 



This work was supported in part by the Open Foundation of State Key Laboratory on Integrated Optoelectronics under Grant No. IOSKL2016KF02.


  1. 1.
    P J Wang, T J Yang, T G Dai, G C Wang, J Zhang, W W Chen and J Y Yang, IEEE Photon. J.  9, 6602010 (2017)Google Scholar
  2. 2.
    J J Zhang, J B Yang, L M Liang and W J Wu, Opt. Commun.  407, 46 (2018)ADSCrossRefGoogle Scholar
  3. 3.
    J Ballato, T Hawkins, P Foy, R Stolen, B Kokuoz, M Ellison, C McMmillen, J Reppert, A M Rao, M Daw, S Sharma, R Shori, O Stafsudd, R R Rice and D R Powers, Opt. Express 16, 18675 (2008)Google Scholar
  4. 4.
    S W Guo and J W Wu, Pramana – J. Phys.  87: 91 (2016)ADSCrossRefGoogle Scholar
  5. 5.
    Y Long, Y Wang, X Hu, M X Ji, L Shen, A D Wang and J Wang, Opt. Lett.  42, 799 (2017)ADSCrossRefGoogle Scholar
  6. 6.
    W J Yang, S J Song, X K Yi, S X Chew, L W Li and L Nguyen, Opt. Lett.  43, 70 (2018)ADSCrossRefGoogle Scholar
  7. 7.
    K Ma, S B Han, L Zhang, Y C Shi and D X Dai, Opt. Express  25, 30876 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    A C Peacock, J Campling, A F J Runge, H N Ren, L Shen, O Aktas, P Horak, N Healy, U J Gibson and J Ballato, IEEE J. Sel. Top. Quant.  24, 5100309 (2018)CrossRefGoogle Scholar
  9. 9.
    H N Ren, O Aktas, Y Franz, A F J Runge, T Hawkins, J Ballato, U J Gibson and A C Peacock, Opt. Express  25, 24157 (2017)ADSCrossRefGoogle Scholar
  10. 10.
    H S Rong, R Jones, A S Liu, O Cohen, D Hak, A Fang and M Paniccia, Nature  433, 725 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    H S Rong, A S Liu, R Jones, O Cohen, D Hak, R Nicolaescu, A Fang and M Paniccia, Nature  433, 292 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    M Guo, G Y Jin, Y Tan, W Zhang, M X Li, J X Cai and Y Ma, Pramana – J. Phys.  87: 98 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    H M Yang, P F Zheng, P P Liu, G H Hu, B F Yun and Y P Cui, Opt. Commun.  410, 559 (2018)ADSCrossRefGoogle Scholar
  14. 14.
    N Pornsuwancharoen, I S Amiri, F H Suhailin, M S Aziz, J Ali, G Singh and P Yupapin, IEEE Photon. Technol. Lett.  29, 1768 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    J Wang, Y M Zhai, J B Mao, Y Q Lu, J Xu and D X Dai, Opt. Commun.  385, 124 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    Y Ishizaka, S Makino, T Fujisawa and K Saitoh, IEEE Photon. J.  9, 6800609 (2017)CrossRefGoogle Scholar
  17. 17.
    Z R Wu, Y J Chen, T Y Zhang, Z K Shao, Y H Wen, P F Xu, Y F Zhang and S Y Yu, J. Opt.  19, 045801 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    L Shen, N Healy, P Mehta, T D Day, J R Sparks, J V Badding and A C Peacock, Opt. Express  21, 13075 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    P Mehta, N Healy, N F Baril, P J A Sazio, J V Badding and A C Peacock, Opt. Express  18, 16826 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    P Mehta, N Healy, T D Day, J V Badding and A C Peacock, Opt. Express  20, 26110 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    S Safioui, F Leo, B Kuyken, S P Gorza, S K Selvaraja, R Baets, P Emplit, G Roelkens and S Massar, Opt. Express  22, 3089 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    J S Pelc, K Rivoire, S Vo, C Santori, D A Fattal and R G Beausoleil, Opt. Express  22, 3797 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    K Narayanan, A W Elshaari and S F Preble, Opt. Express  18, 9809 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    C L Lin, C E Wu, W C Chiu, W L Wu and J S Yu, IEEE J. Sel. Top. Quant.  24, 6000108 (2018)CrossRefGoogle Scholar
  25. 25.
    Y B Zhang, C Husko, S Lefrancois, I H Rey, T F Krauss, J Schröder and B J Eggleton, Opt. Express  24, 443 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    X Liu, M H Pu, B B Zhou, C J Krückel, A Fülöp, V Torres-Company and M Bache, Opt. Lett.  41, 2719 (2016)ADSCrossRefGoogle Scholar
  27. 27.
    K Narayanan and S F Preble, Opt. Express  18, 8998 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    F Leo, J Safioui, B Kuyken, G Roelkens and S P Gorza, Opt. Express 22, 28997 (2014)ADSCrossRefGoogle Scholar
  29. 29.
    L Shen, N Healy, L Xu, H Y Cheng, T D Day, J H V Price, J V Badding and A C Peacock, Opt. Lett.  39, 5721 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    L H Yin and G P Agrawal, Opt. Lett.  32, 2031 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.School of Physics and Electronic EngineeringChongqing Normal UniversityChongqingPeople’s Republic of China

Personalised recommendations