Advertisement

Pramana

, 92:5 | Cite as

Pressure- and orientation-dependent elastic and ultrasonic characterisation of wurtzite boron nitride

  • Chandreshvar Prasad YadavEmail author
  • Dharmendra Kumar Pandey
Article
  • 23 Downloads

Abstract

The present study discloses the evaluation of second-order elastic constants of wurtzite boron nitride (w-BN) at room temperature and at different pressures using the many-body interaction potential model approach. Orientation- and pressure-dependent ultrasonic velocity, thermal relaxation time and other related thermophysical parameters (Debye temperature, Debye average velocity, specific heat and thermal energy density) are also calculated using the evaluated second-order elastic constants. The orientation-dependent thermal relaxation time of w-BN is predominantly affected by the Debye average velocity and is indirectly governed by second-order elastic constants. Thermal relaxation time of w-BN is found to decrease with pressure. Calculated elastic and ultrasonic properties of w-BN are compared with the properties of other wurtzite structured materials for a complete analysis and characterisation of the material.

Keywords

Semiconductor elastic constants thermal relaxation time ultrasonic velocities 

PACS Nos

62.20.de 65.40.-b 62.80.+f 43.35.Cg 

Notes

Acknowledgements

The authors are highly thankful to Prof. R R Yadav, Vice Chancellor, VBS University Jaunpur, UP, India and Dr. Devraj Singh, Amity School of Engineering and Technology, Bijwasn, New Delhi, India for their valuable discussion. The authors also express their thanks to Dr. Suman Singh, Department of English, P.P.N. College, Kanpur, UP, India for his support and help.

References

  1. 1.
    E M Levinshtein, L S Rumyantsev and S M Shur, Boron nitride, in: Properties of advanced semiconductor material: GaN, AlN, InN, BN, SiC, SiGe, 10th edn (Wiley Interscience Publication, John Wiley and Sons Inc., New York, 2001) pp. 67–89Google Scholar
  2. 2.
    I L Berger, Semiconductor material (CRC Press Inc., New York, 1997) p. 112Google Scholar
  3. 3.
    P Meneghetti, P J Hans and G W Shaffer, U.S. patent, US 7445797 (2008)Google Scholar
  4. 4.
    H Q Zhou, J X Zhu, Z Liu, Z Yan, X J Fan, J Lin, G Wang, Q Y Yan, T Yu, P M Ajayan and J M Tour, Nano Res. 7(8), 1232 (2014)CrossRefGoogle Scholar
  5. 5.
    W Zhou, S Qi, Q An, H Zhao and N Liu, Mater. Res. Bull. 42(10), 1863 (2007)CrossRefGoogle Scholar
  6. 6.
    E K Sichel, R E Miller, M S Abrahams and C J Buiocchi, Phys. Rev. B 13, 4607 (1976)ADSCrossRefGoogle Scholar
  7. 7.
    A A Balandin, S Ghosh, W Z Bao, I Calizo, D Teweldebrhan, F Miao and C N Lau, Nano Lett. 8, 902 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    K M F Shahil and A A Balandi, Nano Lett. 12, 861 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    J F Green, T K Bolland and J W Bolland, J. Chem. Phys. 64(2), 656 (1976)ADSCrossRefGoogle Scholar
  10. 10.
    M R Wentzcovitch, K J Chang and L M Cohen, Phys. Rev. B 34, 1071 (1986)Google Scholar
  11. 11.
    M Grimsditch and E S Zouboulis, J. Appl. Phys. 76, 832 (1994)ADSCrossRefGoogle Scholar
  12. 12.
    M B Kanoun, A E Merad, G Merad, J Cibert and H Aourag, Solid-State Electron. 48(9), 1601 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    K Shimada, T Sota and K Suzuku, J. Appl. Phys. 84(9), 4951 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    K Kim, W R L Lambrecht and B Segall, Phys. Rev. B 53(24), 16310 (1996)Google Scholar
  15. 15.
    V L Solozhenko, D Hausermann, M Mezouar and M Kunz, Appl. Phys. Lett. 72(14), 1691 (1998)ADSCrossRefGoogle Scholar
  16. 16.
    B-R Yu, Z-Y Zeng, H-Z Guo and X-R Chen, Commun. Theor. Phys. 48, 925 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    S Daoud, K Loucif, N Bioud, N Lebgaa and L Belagraa, Pramana – J. Phys. 79(1), 95 (2012)Google Scholar
  18. 18.
    M R Martin, Phys. Rev. B 6(12), 4546 (1972)Google Scholar
  19. 19.
    C Kittel, Introduction to solid state physics 7th edn (John Wiley & Sons, Inc, Singapore, New York, 2003) pp. 17, 24, 25, 51Google Scholar
  20. 20.
    K Brugger, Phys. Rev. 133, A1611 (1964)ADSCrossRefGoogle Scholar
  21. 21.
    P B Ghate, Phys. Rev. 139(5), A1666 (1965)ADSCrossRefGoogle Scholar
  22. 22.
    S Mori and Y Hiki, J. Phys. Soc. Jpn 45(5), 1449 (1978)ADSCrossRefGoogle Scholar
  23. 23.
    D K Pandey and S Pandey, Ultrasonic: A technique of material characterization in acoustic waves edited by D W Dissanayake (Scio Publisher, Sciyo, Croatia, 2010) pp. 397–430Google Scholar
  24. 24.
    S O Pillai, Solid state physics: Crystal physics, 7th edn (New Age International Publisher, New Delhi, India, 2005) pp. 100–111Google Scholar
  25. 25.
    D E Gray (ed.), AIP handbook, 3rd edn (McGraw-Hill Co. Inc., New York, 1956) pp. 4-44, 4-45Google Scholar
  26. 26.
    D K Pandey, D Singh and R R Yadav, Appl. Acoust. 68, 766 (2007)CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • Chandreshvar Prasad Yadav
    • 1
    Email author
  • Dharmendra Kumar Pandey
    • 1
  1. 1.Department of PhysicsP.P.N. (P.G.) CollegeKanpurIndia

Personalised recommendations