Skip to main content
Log in

Group classification, conservation laws and Painlevé analysis for Klein–Gordon–Zakharov equations in (3\(+\)1)-dimension

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this paper, we study Klein–Gordon–Zakharov equations which describe the propagation of strong turbulence of the Langmuir wave in a high-frequency plasma. Using the symbolic manipulation tool Maple, the classifications of symmetry algebra are carried out, and the construction of several local non-trivial conservation laws based on a direct method of Anco and Bluman is illustrated. Starting with determination of symmetry algebra, the one- and two-dimensional optimal systems are constructed, and optimality is also established using various invariant functions of full adjoint action. Apart from classification and construction of several conservation laws, the Painlevé analysis is also performed in a symbolic manner which describes the non-integrability of equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N H Ibragimov, Russ. Math. Surv.  47(4), 89 (1992)

    Article  Google Scholar 

  2. A Stubhaug, The mathematician Sophus Lie: It was the audacity of my thinking (Springer Science & Business Media, Berlin, 2013)

    MATH  Google Scholar 

  3. L V Ovsiannikov, Group analysis of differential equations (Academic Press, New York, 1982)

  4. P J Olver, Applications of Lie groups to differential equations (Springer-Verlag Inc., New York, 1986) Vol. 107

    MATH  Google Scholar 

  5. S Lie, Theorie der tranformationsgruppen (B.G. Teubner, Leipzig, 1888)

    Google Scholar 

  6. L Boza, E M Fedriani, J Nunez and A F Tenorio, Rev. Union Math. Argentina  54(2), 75 (2013)

    Google Scholar 

  7. J Patera, P Winternitz and H Zassenhaus, J. Math. Phys.  16(8), 1597 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  8. J Patera, P Winternitz and H Zassenhaus, J. Math. Phys.  16(8), 1615 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  9. J Patera, R T Sharp, P Winternitz and H Zassenhaus, J. Math. Phys.  18(12), 2259 (1977)

    Article  ADS  Google Scholar 

  10. J Patera and P Winternitz, J. Math. Phys.  18(7), 1449 (1977)

    Article  ADS  Google Scholar 

  11. F Galas and E W Richter, Physica D  50(2), 297 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  12. K S Chou, G X Li and C Qu, J. Math. Anal. Appl.  261(2), 741 (2001)

    Article  MathSciNet  Google Scholar 

  13. K S Chou and C Qu, Acta Appl. Math.  83(3), 257 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  14. S G Thornhill and D Ter Haar, Phys. Rep.  43(2), 43 (1978)

    Article  ADS  Google Scholar 

  15. T Ozawa, K Tsutaya and Y Tsutsumi, Ann. l’IHP Anal. Non-Linéaire  12, 459 (1995)

    Article  Google Scholar 

  16. K Tsutaya, Nonlinear Anal: Theory, Methods Appl.  27(12), 1373 (1996)

    Google Scholar 

  17. T Ozawa, K Tsutaya and Y Tsutsumi, Math. Ann.  313(1), 127 (1999)

    Article  MathSciNet  Google Scholar 

  18. J Li, Chaos Solitons Fractals  34(3), 867 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  19. Y Shang, Y Huang and W Yuan, Comput. Math. Appl.  56(5), 1441 (2008)

    Article  MathSciNet  Google Scholar 

  20. M Ismail and A Biswas, Appl. Math. Comput.  217(8), 4186 (2010)

    MathSciNet  Google Scholar 

  21. M Dehghan and A Nikpour, Comput. Phys. Commun.  184(9), 2145 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  22. H L Zhen, B Tian, Y Sun, J Chai and X Y Wen, Phys. Plasmas (1994-present)  22(10), 102304 (2015)

    Article  ADS  Google Scholar 

  23. G Bluman and S C Anco, Symmetry and integration methods for differential equations (Springer-Verlag Inc., New York, 2002) Vol. 154

    MATH  Google Scholar 

  24. R K Gupta and K Singh, Commun. Nonlinear Sci. Numer. Simul.  16(11), 4189 (2011)

    Article  ADS  Google Scholar 

  25. R K Gupta and M Singh, Nonlinear Dyn.  87(3), 1543 (2016)

    Article  Google Scholar 

  26. E S Cheb Terrab and K Von Bülow, Comput. Phys. Commun.  90(1), 102 (1995)

    Article  ADS  Google Scholar 

  27. S V Coggeshall and J M Vehn, J. Math. Phys.  33(10), 3585 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  28. X Hu, Y Li and Y Chen, J. Math. Phys.  56(5), 053504 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  29. I I Ryzhkov, Commun. Nonlinear Sci. Numer. Simul.  11(2), 172 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  30. H Koetz, Z. Naturf. A  48(4), 535 (1993)

    ADS  Google Scholar 

  31. R Naz, F M Mahomed and D P Mason, Appl. Math. Comput.  205(1), 212 (2008)

    MathSciNet  Google Scholar 

  32. N H Ibragimov, J. Math. Anal. Appl.  333(1), 311 (2007)

    Article  MathSciNet  Google Scholar 

  33. S C Anco, Symmetry  9(3), 33 (2017)

    Article  MathSciNet  Google Scholar 

  34. S C Anco and G Bluman, Phys. Rev. Lett.  78(15), 2869 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  35. S C Anco and G Bluman, Eur. J. Appl. Math.  13(05), 545 (2002)

    Google Scholar 

  36. S C Anco and G Bluman, Eur. J. Appl. Math.  13(05), 567 (2002)

    Google Scholar 

  37. G Bluman, A F Cheviakov and S C Anco, Applications of symmetry methods to partial differential equations (Springer, New York, 2010) Vol. 168

    MATH  Google Scholar 

  38. D Poole and W Hereman, Appl. Anal.  89(4), 433 (2010)

    Article  MathSciNet  Google Scholar 

  39. J Weiss, M Tabor and G Carnevale, J. Math. Phys.  24(3), 522 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  40. X Gui Qiong and L Zhi Bin, Comput. Phys. Commun.  161(1–2), 65 (2004)

    ADS  Google Scholar 

Download references

Acknowledgements

Rajesh Kumar Gupta thanks the University Grants Commission for sponsoring this research under the Research Award Scheme (F. 30-105 / 2016 (SA-II)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manjit Singh.

Appendices

Appendix A. Maple code for full adjoint action

figure a

Appendix B

$$\begin{aligned} {\tilde{a}}_{1}= & {} a_{1},\\ {\tilde{a}}_{2}= & {} -\cos ( \epsilon _{{2}} ) \cos ( \epsilon _{{5}} ) \sin ( \epsilon _{{3}} ) a_{{5}}\\&+\sin ( \epsilon _{{2}} ) \cos ( \epsilon _{{5}} ) \sin ( \epsilon _{{3}} ) a_{{3}}\\&+\cos ( \epsilon _{{2}} ) \sin ( \epsilon _{{5}} ) a_{{3}}+\sin ( \epsilon _{{2}} ) \sin ( \epsilon _{{5}} ) a_{{5}}\\&+\cos ( \epsilon _{{5}} ) \cos ( \epsilon _{{3}} ) a_{{2}},\\ {\tilde{a}}_{3}= & {} \cos ( \epsilon _{{2}} ) \sin ( \epsilon _{{5}} ) \sin ( \epsilon _{{3}} ) a_{{5}}\\&-\sin ( \epsilon _{{2}} ) \sin ( \epsilon _{{5}} ) \sin ( \epsilon _{{3}} ) a_{{3}}\\&+\cos ( \epsilon _{{2}} ) \cos ( \epsilon _{{5}} ) a_{{3}}+\sin ( \epsilon _{{2}} ) \cos ( \epsilon _{{5}} ) a_{{5}}\\&-\sin ( \epsilon _{{5}} ) \cos ( \epsilon _{{3}} ) a_{{2}},\\ {\tilde{a}}_{4}= & {} a_{{4}}\cos ( \epsilon _{{2}} ) {\mathrm{e}^{\epsilon _{{1}}}} \cos ( \epsilon _{{3}} ) +a_{{3}}\cos ( \epsilon _{{2}} ) \epsilon _{{4}}\sin ( \epsilon _{{3}} ) \\&+\,a_{{5}}\cos ( \epsilon _{{2}} ) \epsilon _{{6}}\sin ( \epsilon _{{3} } )-a_{{3}}\cos ( \epsilon _{{2}} ) \epsilon _{{7}} \cos ( \epsilon _{{3}} )\\&+\,a_{{6}}\sin ( \epsilon _{{2}} ) {\mathrm{e}^{\epsilon _{{1}}}}\cos ( \epsilon _{{3}} ) -a_{{3}}\sin ( \epsilon _{{2}} ) \epsilon _{{6}}\sin ( \epsilon _{{3}} )\\&+\,a_{{5}}\sin ( \epsilon _{{2}} ) \epsilon _{{4}}\sin ( \epsilon _{{3}} ) -a_{{5}}\sin ( \epsilon _{{2}} ) \epsilon _{{7}}\cos ( \epsilon _{{3}} ) \\&+\,a_{{7}}{\mathrm{e}^{\epsilon _{{1}}}}\sin ( \epsilon _{{3}} ) -a_{{1}}\epsilon _{{7}}\sin ( \epsilon _{{3}} )\\&-\,a_{ {1}}\epsilon _{{4}}\cos ( \epsilon _{{3}} ) -a_{{2}}\epsilon _ {{6}}\cos ( \epsilon _{{3}} ),\\ {\tilde{a}}_{5}= & {} a_{{5}}\cos ( \epsilon _{{2}} ) \cos ( \epsilon _{{3}} ) -a_{{3}}\sin ( \epsilon _{{2}} ) \cos ( \epsilon _{{3}} )\\&+a_{{2}}\sin ( \epsilon _{{3}} ),\\ {\tilde{a}}_{6}= & {} -\cos ( \epsilon _{{2}} ) {\mathrm{e}^{\epsilon _{{1}}}}\sin ( \epsilon _{{5}} ) \sin ( \epsilon _{{3}} ) a_{{ 4}}\\&+\cos ( \epsilon _{{2}} ) \sin ( \epsilon _{{5}} ) \sin ( \epsilon _{{3}} ) a_{{3}}\epsilon _{{7}}\\&+\cos ( \epsilon _{{2}} ) \sin ( \epsilon _{{5}} ) \cos ( \epsilon _{{3}} ) a_{{3}}\epsilon _{{4}}\\&+\cos ( \epsilon _{{2}} ) \sin ( \epsilon _{{5}} ) \cos ( \epsilon _{{3}} ) a_{{5}}\epsilon _{{6}}\\&-\sin ( \epsilon _{{2} } ) {\mathrm{e}^{\epsilon _{{1}}}}\sin ( \epsilon _{{5}} ) \sin ( \epsilon _{{3}} ) a_{{6}}\\&+\sin ( \epsilon _{{2}} ) \sin ( \epsilon _{{5}} ) \sin ( \epsilon _{{3}} ) a_{{5}}\epsilon _{{7}}\\&-\sin ( \epsilon _{{2} } ) \sin ( \epsilon _{{5}} ) \cos ( \epsilon _{{3} } ) a_{{3}}\epsilon _{{6}}\\&+\sin ( \epsilon _{{2}} ) \sin ( \epsilon _{{5}} ) \cos ( \epsilon _{{3}} ) a_{{5}}\epsilon _{{4}}\\&+\cos ( \epsilon _{{2}} ) {\mathrm{e}^{ \epsilon _{{1}}}}\cos ( \epsilon _{{5}} ) a_{{6}}-\cos ( \epsilon _{{2}} ) \cos ( \epsilon _{{5}} ) a_{{ 5}}\epsilon _{{7}}\\&-\sin ( \epsilon _{{2}} ) {\mathrm{e}^{ \epsilon _{{1}}}}\cos ( \epsilon _{{5}} ) a_{{4}}+\sin ( \epsilon _{{2}} ) \cos ( \epsilon _{{5}} ) a_{{ 3}}\epsilon _{{7}}\\&+\,{\mathrm{e}^{\epsilon _{{1}}}}\sin ( \epsilon _{{5}} ) \cos ( \epsilon _{{3}} ) a_{{7}}\\&+\sin ( \epsilon _{{5}} ) \sin ( \epsilon _{{3}} ) a_{{1}} \epsilon _{{4}}+\sin ( \epsilon _{{5}} ) \sin ( \epsilon _{{3}} ) a_{{2}}\epsilon _{{6}}\\&-\sin ( \epsilon _{{5}} ) \cos ( \epsilon _{{3}} ) a_{{1}}\epsilon _{{7}}\\&-\cos ( \epsilon _{{5}} ) a_{{1}}\epsilon _{{6}}+\cos ( \epsilon _{{5}} ) a_{{2}}\epsilon _{{4}},\\ {\tilde{a}}_{7}= & {} -\cos ( \epsilon _{{2}} ) {\mathrm{e}^{\epsilon _{{1}}}}\cos ( \epsilon _{{5}} ) \sin ( \epsilon _{{3}} ) a_{{ 4}}\\&+\cos ( \epsilon _{{2}} ) \cos ( \epsilon _{{5}} ) \sin ( \epsilon _{{3}} ) a_{{3}}\epsilon _{{7}}\\&+\cos ( \epsilon _{{2}} ) \cos ( \epsilon _{{5}} ) \cos ( \epsilon _{{3}} ) a_{{3}}\epsilon _{{4}}\\&+\cos ( \epsilon _{{2}} ) \cos ( \epsilon _{{5}} ) \cos ( \epsilon _{{3}} ) a_{{5}}\epsilon _{{6}}\\&-\sin ( \epsilon _{{2} } ) {\mathrm{e}^{\epsilon _{{1}}}}\cos ( \epsilon _{{5}} ) \sin ( \epsilon _{{3}} ) a_{{6}}\\&+\sin ( \epsilon _{{2}} ) \cos ( \epsilon _{{5}} ) \sin ( \epsilon _{{3}} ) a_{{5}}\epsilon _{{7}}\\&-\sin ( \epsilon _{{2} } ) \cos ( \epsilon _{{5}} ) \cos ( \epsilon _{{3} } ) a_{{3}}\epsilon _{{6}}\\&+\sin ( \epsilon _{{2}} ) \cos ( \epsilon _{{5}} ) \cos ( \epsilon _{{3}} ) a_{{5}}\epsilon _{{4}}\\&-\cos ( \epsilon _{{2}} ) {\mathrm{e}^{ \epsilon _{{1}}}}\sin ( \epsilon _{{5}} ) a_{{6}}+\cos ( \epsilon _{{2}} ) \sin ( \epsilon _{{5}} ) a_{{ 5}}\epsilon _{{7}}\\&+\sin ( \epsilon _{{2}} ) {\mathrm{e}^{ \epsilon _{{1}}}}\sin ( \epsilon _{{5}} ) a_{{4}}\\&-\sin ( \epsilon _{{2}} ) \sin ( \epsilon _{{5}} ) a_{{ 3}}\epsilon _{{7}}+{\mathrm{e}^{\epsilon _{{1}}}}\cos ( \epsilon _{{5}} ) \cos ( \epsilon _{{3}} ) a_{{7}}\\&+\cos ( \epsilon _{{5}} ) \sin ( \epsilon _{{3}} ) a_{{1}} \epsilon _{{4}}\\&+\cos ( \epsilon _{{5}} ) \sin ( \epsilon _{{3}} ) a_{{2}}\epsilon _{{6}}-\cos ( \epsilon _{{5}} ) \cos ( \epsilon _{{3}} ) a_{{1}}\epsilon _{{7}}\\&+\sin ( \epsilon _{{5}} ) a_{{1}}\epsilon _{{6}}-\sin ( \epsilon _{{5}} ) a_{{2}}\epsilon _{{4}},\\ {\tilde{a}}_{8}= & {} -{\mathrm{e}^{\epsilon _{{1}}}}a_{{1}}\epsilon _{{8}}+{\mathrm{e}^{\epsilon _{{ 1}}}}a_{{8}},\\ {\tilde{a}}_{9}= & {} a_{9}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M., Gupta, R.K. Group classification, conservation laws and Painlevé analysis for Klein–Gordon–Zakharov equations in (3\(+\)1)-dimension. Pramana - J Phys 92, 1 (2019). https://doi.org/10.1007/s12043-018-1665-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-018-1665-3

Keywords

PACS Nos

Navigation