Advertisement

Pramana

, 92:4 | Cite as

Study of multiplicity dependence of pion fluctuations in \(\pi ^{-}\)–AgBr collisions at 350 GeV using complex network approach

  • Susmita BhaduriEmail author
  • Anirban Bhaduri
  • Dipak Ghosh
Article
  • 20 Downloads

Abstract

A complex network and chaos-based method, based on the visibility graph algorithm, is applied to study particle fluctuations in \(\pi ^{-}\)–AgBr interactions at 350 GeV with respect to the shower multiplicity dependence. The fractal structure of the fluctuations is studied by using the power of scale freeness of visibility graph (PSVG). The selection of visibility graph as the type of complex network for our analysis is justified as this algorithm gives the most precise result with finite number of data points and this experiment has finite number of events. The topological parameters along with PSVG values are extracted and analysed. The analysis shows that the fractality character is weaker for the lowest multiplicity bin and is stronger for the highest multiplicity bin.

Keyword

Complex network visibility graph high-energy collision topological parameters chaos-based nonlinear analysis 

PACS No

25.80.Hp 

Notes

Acknowledgements

The authors thank the Department of Higher Education, Government of West Bengal, India, for logistics support of computational analysis.

References

  1. 1.
    A Bialas and R Peschanski, Nucl. Phys. B 273, 703 (1986)ADSCrossRefGoogle Scholar
  2. 2.
    A Bialas and R Peschanski, Nucl. Phys. B 308, 857 (1988)ADSCrossRefGoogle Scholar
  3. 3.
    E De Wolf, I Dremin and W Kittel, Phys. Rep. 270, 1 (1996)Google Scholar
  4. 4.
    R Hwa, Phys. Rev. D 41, 1456 (1990)Google Scholar
  5. 5.
    A V G Paladin, Fractals 3(4), 785 (1995)CrossRefGoogle Scholar
  6. 6.
    I P P Grassberger, Physica D 13, 34 (1984)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    M J T C Halsey, L Kadanoff, I Procaccia and B Shriman, Phys. Rev. A 33, 1141 (1986)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    F Takagi, Phys. Rev. Lett. 72, 32 (1994)ADSCrossRefGoogle Scholar
  9. 9.
    M  Newman, A Barabasi and D Watts (Eds), The structure and dynamics of networks (Princeton University Press, 2006)Google Scholar
  10. 10.
    S Boccaletti, V Latora, Y Moreno, M Chavez and D Hwang, Phys. Rep. 424, 175 (2006)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    R Cohen, Complex networks structure, robustness and function, 1st edn (Cambridge University Press, 2014)Google Scholar
  12. 12.
    L Lacasa, B Luque, F Ballesteros, J Luque and J C Nuno, Proc. Natl Acad. Sci. 105, 4972 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    L Lacasa, B Luque, J Luque and J C Nuno, Europhys. Lett. 86(3), 30001 (2009)Google Scholar
  14. 14.
    S Bhaduri and D Ghosh, Int. J. Mod. Phys. A 31, 1650185 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    S Bhaduri and D Ghosh, Acta Phys. Pol. B 48, 741 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    S Bhaduri and D Ghosh, Mod. Phys. Lett. A 31, 1650158 (2016)ADSCrossRefGoogle Scholar
  17. 17.
    S Bhaduri, A Bhaduri and D Ghosh, Eur. Phys. J. A 53, 135 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    A Bhaduri, S Bhaduri and D Ghosh, Phys. Part. Nucl. Lett. 14, 576 (2017)CrossRefGoogle Scholar
  19. 19.
    M Ahmadlou, H Adeli and A Adeli, Phys. A: Stat. Mech. Appl. 391(20), 4720 (2012)CrossRefGoogle Scholar
  20. 20.
    E Estrada, Phys. Rev. E 82, 066102 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    D J J Watts and S H H Strogatz, Nature 393, 440 (1998)ADSCrossRefGoogle Scholar
  22. 22.
    S C Carlson, Graph theory,  https://doi.org/10.1007/978-1-84628-970-5 (2014)
  23. 23.
    D B Johnson, J. ACM 24, 1 (1977)CrossRefGoogle Scholar
  24. 24.
    M E J Newman, Phys. Rev. Lett. 89, 208701 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    R Albert and A-L Barabási, Rev. Mod. Phys. 74, 47 (2002)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    C Ye, R C Wilson, C H Comin, L da F Costa and E R Hancock, Entropy and heterogeneity measures for directed graphs (Springer, Berlin, Heidelberg, 2013)CrossRefGoogle Scholar
  27. 27.
    A D Dipak Ghosh, S Bhattacharyya and U Datta, J. Phys. G 39(3), 035101 (2012)Google Scholar
  28. 28.
    C F  Powell, P H Fowler and D H Perkins, The study elementary particles by the photographic method (Pergamon Press, Oxford, 1959)Google Scholar
  29. 29.
    S Jiang, C Bian, X Ning and Q D Y Ma, Appl. Phys. Lett. 102(25), 253 (2013)Google Scholar
  30. 30.
    D Ghosh, A Deb, S Bhattacharyya and U Datta, Phys. Scr. 85(6), 065205 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    K Pearson, Philos. Mag. Ser. 5 50(302), 157 (1900)Google Scholar
  32. 32.
    A Clauset, C R Shalizi and M E J Newman, SIAM Rev. 51, 661 (2009)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    D Ghosh, A Deb and S Dutta, Can. J. Phys. 86(5), 751 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    A-L Barabási, Nature Phys. 8, 14 (2011)ADSCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  1. 1.Deepa Ghosh Research FoundationKolkataIndia

Personalised recommendations