Advertisement

Pramana

, 91:89 | Cite as

Multistability in coupled different-dimensional dynamical systems

  • Mohammad Ali Khan
  • Mayurakshi Nag
  • Swarup Poria
Article
  • 5 Downloads

Abstract

Multistability or coexistence of different chaotic attractors for a given set of parameters depending on the initial condition only is one of the most exciting phenomenon in dynamical systems. The schemes to design multistability systems via coupling two identical or non-identical but the same-dimensional systems have been proposed earlier. Coupled different-dimensional systems are very useful to describe the real-world physical and biological systems. In this paper, a scheme for designing a multistable system by coupling two different-dimensional dynamical systems has been proposed. Coupled Lorenz and Lorenz–Stenflo systems have been considered to illustrate the scheme. The efficiency of the scheme is shown numerically, by presenting phase diagrams, bifurcation diagrams and variation of maximum Lyapunov exponents.

Keywords

Multistability Lorenz system Lorenz-Stenflo system bifurcation analysis synchronisation 

PACS Nos

01 05 60 64 

References

  1. 1.
    F T Arecchi, R Meucci, G Puccioni and J Tredicce, Phys. Rev. Lett. 49, 1217 (1982)ADSCrossRefGoogle Scholar
  2. 2.
    K Otsuka and H Iwamura, Phys. Rev. A 28, 3153 (1983)ADSCrossRefGoogle Scholar
  3. 3.
    J Borreson and S Lynch, Int. J. Bifurc. Chaos 12, 129 (2002)CrossRefGoogle Scholar
  4. 4.
    E M Ozbudak, M Thattai, H N Lim, B I Shairman and A V Oudenaarden, Nature 427, 737 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    C A Barnes, M S Susten, J Chen and B L Mcnaughton, Nature 388, 272 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    S P Ansari, S K Agrawal and S Das, Pramana – J. Phys. 84, 1 (2015)CrossRefGoogle Scholar
  7. 7.
    R Calov and A Ganopolski, Geophys. Res. Lett. 32, L21717 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    R M May, Nature 269, 471 (1977)ADSCrossRefGoogle Scholar
  9. 9.
    C N Ngonghala, U Feudel and K Showalter, Phys. Rev. E 83, 056206 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    C R Hens, R Banerjee, U Feudal and S K Dana, Phys. Rev. E 85, 035202 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    S Pal, B Sahoo and S Poria, Phys. Scr. 89, 045202 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    N Cai, W Li and Y Jing, Nonlinear Dyn. 64, 383 (2011)CrossRefGoogle Scholar
  13. 13.
    E N Lorenz, J. Atmos. Sci. 20, 130 (1963)ADSCrossRefGoogle Scholar
  14. 14.
    L Stenflo, Phys. Scr. 53, 83 (1996)ADSCrossRefGoogle Scholar
  15. 15.
    S Pal and S Poria, Phys. Scr. 90, 035203 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    M A Khan, M Nag and S Poria, Pramana – J. Phys. 89: 19 (2017)ADSCrossRefGoogle Scholar
  17. 17.
    P Chakraborty, Pramana – J. Phys. 89: 41 (2017).ADSCrossRefGoogle Scholar
  18. 18.
    S Pal, B Sahoo and S Poria, Pramana – J. Phys. 86, 6 (2016)CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • Mohammad Ali Khan
    • 1
  • Mayurakshi Nag
    • 2
  • Swarup Poria
    • 2
  1. 1.Department of MathematicsRamananda CollegeBishnupurIndia
  2. 2.Department of Applied MathematicsUniversity of CalcuttaKolkataIndia

Personalised recommendations