Pramana

, 90:55 | Cite as

Some dynamical aspects of interacting quintessence model

  • Binayak S Choudhury
  • Himadri Shekhar Mondal
  • Devosmita Chatterjee
Article
  • 52 Downloads

Abstract

In this paper, we consider a particular form of coupling, namely \(B=\sigma (\dot{\rho _m}-\dot{\rho _\phi })\) in spatially flat (\(k=0\)) Friedmann–Lemaitre–Robertson–Walker (FLRW) space–time. We perform phase-space analysis for this interacting quintessence (dark energy) and dark matter model for different numerical values of parameters. We also show the phase-space analysis for the ‘best-fit Universe’ or concordance model. In our analysis, we observe the existence of late-time scaling attractors.

Keywords

Accelerated expansion of the Universe quintessence dynamical system Friedmann–Lemaitre–Robertson–Walker Universe interacting quintessence model phase-space analysis best-fit Universe late-time scaling attractors 

PACS Nos

98.80.Hw 98.80.-k 95.36.+x 

Notes

Acknowledgements

The authors are thankful to Indian Institute of Engineering, Science and Technology (Shibpur) and Midnapore College (autonomous) for their support.

References

  1. 1.
    A C Balfagon, Gen. Relativ. Gravit. 47, 111 (2015)Google Scholar
  2. 2.
    P Astier and R Pain, Comptes Rendus Phys. 13, 521 (2012)Google Scholar
  3. 3.
    B P Schmidt, Rev. Mod. Phys. 84, 1151 (2012)Google Scholar
  4. 4.
    S M Carroll, AIP Conference Proceedings 743, 16 (2004)Google Scholar
  5. 5.
    N Roy and N Banerjee, Gen. Relativ. Gravit. 46, 1651 (2014)Google Scholar
  6. 6.
    M Shahalam et al, Eur. Phys. J. C 75, 395 (2015)Google Scholar
  7. 7.
    M Khurshudyan, E Chubaryan and B Pourhassan, Int. J. Theor. Phys. 53, 2370 (2014)CrossRefGoogle Scholar
  8. 8.
    K Nozari and N Behrouzdoi, Phys. Dark Universe 13, 92 (2016)Google Scholar
  9. 9.
    K H Kim, H W Lee and Y S Myung, Phys. Lett. B 648, 107 (2007)Google Scholar
  10. 10.
    M Szydłowski and O Hrycyna, Gen. Relativ. Gravit. 38, 121 (2006)Google Scholar
  11. 11.
    B Fazlpour, Gen. Relativ. Gravit. 48, 159 (2016)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    N Banerjee, S Das and K Ganguly, Pramana – J. Phys. 74, 481 (2010)Google Scholar
  13. 13.
    N Banerjee and S Das, Mod. Phys. Lett. A 21, 2663 (2006)Google Scholar
  14. 14.
    N Roy and N Banerjee, Eur. Phys. J. Plus 129, 162 (2014)CrossRefGoogle Scholar
  15. 15.
    O Lahav, Astron. Astrophys. 3 (2001)Google Scholar

Copyright information

© Indian Academy of Sciences 2018

Authors and Affiliations

  • Binayak S Choudhury
    • 1
  • Himadri Shekhar Mondal
    • 2
  • Devosmita Chatterjee
    • 1
  1. 1.Department of Basic and Applied SciencesIndian Institute of Engineering, Science and TechnologyShibpurIndia
  2. 2.Department of MathematicsMidnapore College (Autonomous)MedinipurIndia

Personalised recommendations