Pramana

, 89:87 | Cite as

Dynamic evolution of double \(\Lambda \) five-level atom interacting with one-mode electromagnetic cavity field

Article
  • 77 Downloads

Abstract

In this paper, the model describing a double \(\Lambda \) five-level atom interacting with a single mode electromagnetic cavity field in the (off) non-resonate case is studied. We obtained the constants of motion for the considered model. Also, the state vector of the wave function is given by using the Schrödinger equation when the atom is initially prepared in its excited state. The dynamical evolutions for the collapse revivals, the antibunching of photons and the field squeezing phenomena are investigated when the field is considered in a coherent state. The influence of detuning parameters on these phenomena is investigated. We noticed that the atom–field properties are influenced by changing the detuning parameters. The investigation of these aspects by numerical simulations is carried out using the Quantum Toolbox in Python (QuTip).

Keywords

Five-level atom squeezing collapse revivals 

PACS Nos

03.67.Bg 03.67.Mn 03.67.Hk 42.50.Dv 

References

  1. 1.
    E T Jaynes and F W Cummings, Proc. IEEE  51, 89 (1963)CrossRefGoogle Scholar
  2. 2.
    S Feneuile, Rep. Prog. Phys.  40, 1257 (1977)ADSCrossRefGoogle Scholar
  3. 3.
    X-S Li, D L Li and C D Dong, Phys. Rev. A  36, 5209 (1987)ADSCrossRefGoogle Scholar
  4. 4.
    Z-D Liu, X-S Li and D L Lin, Phys. Rev. A  36, 5220 (1987)ADSCrossRefGoogle Scholar
  5. 5.
    N H Abdel-Wahab, Phys. Scr.  76, 233 (2007); Phys. Scr . 76, 244 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    A Salah, Quantum aspects for three-level atom with one mode cavity field (Lambert Academic Publishing, 2015)Google Scholar
  7. 7.
    Z D Liu, S-Y Zhu and X-S Li, J. Mod. Opt.  45, 833 (1988)ADSCrossRefGoogle Scholar
  8. 8.
    A-S F Obada, A M M Abu-Sitta and O M Yassin, J. Egypt Math. Soc.  2, 103 (1994)Google Scholar
  9. 9.
    K I Osman and H A Ashi, Physica A  310, 165 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    N H Abdel-Wahab, M E Amin and M Taha, Fizika (Zagreb)  2, 113 (2006)ADSGoogle Scholar
  11. 11.
    N H Abdel-Wahab, J. Appl. Math. Inf. Sci.  1, 263 (2007)MathSciNetGoogle Scholar
  12. 12.
    N H Abdel-Wahab, J. Phys. B: At. Mol. Opt. Phys.  40, 4233 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    N H Abdel-Wahab, J. Phys. B: At. Mol. Opt. Phys.  41, 105502 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    N H Abdel-Wahab, Mod. Phys. Lett. B  22, 2801 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    N H Abdel-Wahab, Nouvo Cimento B  125, 173 (2010)Google Scholar
  16. 16.
    M Mahjoei, M M Golshan and H Safari, Pramana – J. Phys.  80, 5 (2013)Google Scholar
  17. 17.
    E K Bashkirov and M S Mastyugin, Pramana – J. Phys.  84, 1 (2015)Google Scholar
  18. 18.
    S Abdel-Khalek and S H A Halawani, Pramana – J. Phys.  85, 6 (2015)Google Scholar
  19. 19.
    S Ahmed, P N Wasnik, S Singh and P A Lakshmi, Pramana – J. Phys.  87, 85 (2016)Google Scholar
  20. 20.
    D Bhattacharyya, B Ray and P N Ghosh, J. Phys. B: At. Mol. Opt. Phys.  40, 4061 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    M A Anton, F Carreno,Ô G Calderón, S Melle and I Gonzalo, Opt. Commun.  281, 24 (2008)Google Scholar
  22. 22.
    N H Abdel-Wahab, Mod. Phys. Lett. B  25, 1971 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    Z Wang, B Yu, J Zhu, Z Cao, S Zhen and X Wu, Ann. Phys.  327, 1132 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    N H Abdel Wahab and A Salah, Eur. Phys. J. Plus  130, 92 (2015)Google Scholar
  25. 25.
    N H Abdel Wahab and A Salah, Mod. Phys. Lett.  25, 29 (2015)ADSGoogle Scholar
  26. 26.
    R Loundon, The quantum theory of light (Clarendon Press, Oxford, 1983)Google Scholar
  27. 27.
    M S Kim, J. Mod. Opt.  40, 1331. 2412 (1993)Google Scholar
  28. 28.
    R E Slusher, W Hollberg, B Yurke, J C Mertz and J F Valley, Phys. Rev. Lett.  55 (1985)Google Scholar
  29. 29.
    R M Shelby, M D Levenson, S H Perlmutter, R G De Voe and D F Walls, Phys. Rev. Lett. 57 (1986)Google Scholar
  30. 30.
    L A Wu, H J Kimble, J L Hall and H Wu, Phys. Rev. Lett.  57, 2520 (1986)ADSCrossRefGoogle Scholar
  31. 31.
    H A Bachor, A guide to experiments in quantum optics (Wiley, Weinheim, 1998)MATHGoogle Scholar
  32. 32.
    H A Haus, Electromagnetic noise and quantum optical measurements (Springer, Berlin, 2000)CrossRefMATHGoogle Scholar
  33. 33.
    J Kim, S Somani and Y Yamamoto, Nonclassical light from semiconductor lasers and LEDs (Springer, Berlin, 2001)CrossRefGoogle Scholar
  34. 34.
    S L Braunstein and H J Kimble, Phys. Rev. Lett.  80, 869 (1998)ADSCrossRefGoogle Scholar
  35. 35.
    G J Milburn and S L Braunstein, Phys. Rev. A  60, 937 (1999)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    A Furusawa, J Sorensen, S L Braunstein, C A Fuchs, H J Kimble and E S Polzik, Science  282, 706 (1998)ADSCrossRefGoogle Scholar
  37. 37.
    T C Ralph, Phys. Rev. A  61, 010303 (2000)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    M Hillery, Phys. Rev. A  61, 022309 (2000)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    M Ban, Phys. Lett. A  276, 213 (2000)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    M Ban, J. Opt. B: Quantum Semiclass. Opt.  2, 786 (2000)ADSCrossRefGoogle Scholar
  41. 41.
    H P Yuen and J H Shapiro, IEEE Trans. Inf. Theory 24, 657 (1978)CrossRefGoogle Scholar
  42. 42.
    H P Yuen and J H Shapiro, IEEE Trans. Inf. Theory 25, 179 (1979)CrossRefGoogle Scholar
  43. 43.
    H P Yuen and J H Shapiro, IEEE Trans. Inf. Theory  26, 78 (1980)CrossRefGoogle Scholar
  44. 44.
    J H Shapiro, Opt. Lett.  5, 351 (1980)ADSCrossRefGoogle Scholar
  45. 45.
    C M Caves and B I Schumaker, Phys. Rev. A  31, 3068 (1985)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    B I Schumaker and C M Caves, Phys. Rev. A  31, 3093 (1985)ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    S L Braunstein and H L Kimple, Phys. Rev. A  61, 042302 (2002)ADSCrossRefGoogle Scholar
  48. 48.
    U Leonhardt, Measuring the quantum state of light (Cambridge University Press, 1997)Google Scholar
  49. 49.
    N H A El-Wabab, A S A Rady, A N A Osman and A Salah, Euro Phys. J. Plus 130(10), 207 (2015)Google Scholar
  50. 50.
    U Leonhardt, Measuring the quantum state of light, in: Cambridge studies in modern optics (Cambridge University Press, 1997)Google Scholar
  51. 51.
    H J Carmichael, Statistical methods in quantum optics I: Master equations and Fokker–Planck equations (Springer-Verlag, 2002)Google Scholar
  52. 52.
    D J E Callaway, Nucl. Phys. B  344, 627 (1990)ADSCrossRefGoogle Scholar
  53. 53.
    J R Johansson, P D Nation and Franco Nori, Comput. Phys. Commun.  184(4), 1234 (2013)ADSCrossRefGoogle Scholar
  54. 54.
    O Schmidt, R Wynands, Z Hussein and D Meschede, Phys. Rev. A  53, R27 (1996)ADSCrossRefGoogle Scholar
  55. 55.
    S E Harris, Phys. Today  50, 36 (1997)CrossRefGoogle Scholar
  56. 56.
    M Fleischhauer and M D Lukin, Phys. Rev. Lett.  84, 5094 (2000)ADSCrossRefGoogle Scholar
  57. 57.
    S E Harris, Phys. Rev. Lett.  62, 1033 (1989)ADSCrossRefGoogle Scholar
  58. 58.
    A S Zibrov, M D Lukin, D E Nikonov, L Hollberg, M O Scully, V L Velichansky and H G Robinson, Phys. Rev. Lett.  75, 1499 (1995)ADSCrossRefGoogle Scholar
  59. 59.
    E Ahmed, A Hansson, P Qi, T Kirova, L Li, J Qi, A Lazoudis, S Magnier, S Kotochigova and A M Lyyra, J. Chem. Phys.  124, 084308 (2006)ADSCrossRefGoogle Scholar
  60. 60.
    B D Yang, Q B Liang, J He, T C Zhang and J M Wang, Phys. Rev. A  81, 043803 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2017

Authors and Affiliations

  1. 1.Mathematics Department, Faculty of ScienceMinia UniversityMiniaEgypt
  2. 2.Mathematics and Theoretical Physics Department, Nuclear Research CenterAtomic Energy AuthorityCairoEgypt

Personalised recommendations