Advertisement

Pramana

, 89:80 | Cite as

Quantum eraser for three-slit interference

  • Naveed Ahmad Shah
  • Tabish Qureshi
Article
  • 134 Downloads

Abstract

It is well known that in a two-slit interference experiment, if the information, on which of the two paths the particle followed, is stored in a quantum path detector, the interference is destroyed. However, in a set-up where this path information is ‘erased’, the interference can reappear. Such a set-up is known as a quantum eraser. A generalization of quantum eraser to a ‘three-slit’ interference is theoretically analysed. It is shown that three complementary interference patterns can arise out of the quantum erasing process.

Keywords

Quantum eraser wave–particle duality quantum interference 

PACS No

03.65.Ta 

Notes

Acknowledgements

Naveed is thankful to the Centre for Theoretical Physics, Jamia Millia Islamia, New Delhi, for providing its facilities during the course of this work.

References

  1. 1.
    T Young, Phil. Trans. R. Soc. London 92, 12 (1802)CrossRefGoogle Scholar
  2. 2.
    C Jönsson, Am. J. Phys. 42, 4 (1974)ADSCrossRefGoogle Scholar
  3. 3.
    A Tonomura, J Endo, T Matsuda, T Kawasaki and H Ezawa, Am. J. Phys. 57, 117 (1989)ADSCrossRefGoogle Scholar
  4. 4.
    N Bohr, Nature 121, 580 (1928)ADSCrossRefGoogle Scholar
  5. 5.
    T Qureshi and R Vathsan, Quanta 2, 58 (2013)CrossRefGoogle Scholar
  6. 6.
    D Sen, Pramana – J. Phys. 72, 765 (2009)Google Scholar
  7. 7.
    W K Wootters and W H Zurek, Phys. Rev. D 19, 473 (1979)ADSCrossRefGoogle Scholar
  8. 8.
    D M Greenberger and A Yasin, Phys. Lett. A 128, 391 (1988)ADSCrossRefGoogle Scholar
  9. 9.
    B-G Englert, Phys. Rev. Lett. 77, 2154 (1996)ADSCrossRefGoogle Scholar
  10. 10.
    E Jaynes, in: Foundations of radiation theory and quantum electronics edited by A O Barut (Plenum, New York, 1980), p. 37Google Scholar
  11. 11.
    M O Scully and Kai Drühl, Phys. Rev. A 25, 2208 (1981)ADSCrossRefGoogle Scholar
  12. 12.
    P G Kwiat, A M Steinberg and R Y Chiao, Phys. Rev. A 45, 7729 (1992)ADSCrossRefGoogle Scholar
  13. 13.
    T J Herzog, P G Kwiat, H Weinfurter and A Zeilinger, Phys. Rev. Lett. 75, 3034 (1995)ADSCrossRefGoogle Scholar
  14. 14.
    S Durr, T Nonn and G Rempe, Nature 395, 33 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    B Dopfer, Ph.D. thesis (Universtat Innsbruck, 1998), unpublished)Google Scholar
  16. 16.
    P D D Schwindt, P G Kwiat and B-G Englert, Phys. Rev. A 60, 4285 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    Y H Kim, R Yu, S P Kulik, Y Shih and M O Scully, Phys. Rev. Lett. 84, 1 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    T Tsegaye, G Bjork, M Atature, A V Sergienko, B E A Saleh and M C Teich, Phys. Rev. A 62, 032106 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    P Bertet, S Osnaghi, A Rauschenbeutel, G Nogues, A Auffeves, M Brune, J M Raimond and S Haroche, Nature 411, 166 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    A Trifonov, G Bjork, J Soderholm and T Tsegaye, Eur. Phys. J. D 18, 251 (2002)ADSGoogle Scholar
  21. 21.
    S P Walborn, M O Terra Cunha, S Padua and C H Monken, Phys. Rev. A 65, 033818 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    U L Andersen, O Glockl, S Lorenz, G Leuchs and R Filip, Phys. Rev. Lett. 93, 100403 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    G Scarcelli, Y Zhou and Y Shih, Eur. Phys. J. D 44, 167 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    G Jaeger, A Shimony and L Vaidman, Phys. Rev. A 51, 54 (1995)ADSCrossRefGoogle Scholar
  25. 25.
    S Dürr, Phys. Rev. A 64, 042113 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    G Bimonte and R Musto, Phys. Rev. A 67, 066101 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    B-G Englert, Int. J. Quantum Inform. 6, 129 (2008)CrossRefGoogle Scholar
  28. 28.
    M A Siddiqui and T Qureshi, Prog. Theor. Exp. Phys. 2015, 083A02 (2015)CrossRefGoogle Scholar
  29. 29.
    M A Siddiqui, Int. J. Quant. Inf. 13, 1550022 (2015)CrossRefGoogle Scholar
  30. 30.
    M N Bera, T Qureshi, M A Siddiqui and A K Pati, Phys. Rev. A 92, 012118 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    E Bagan, J A Bergou, S S Cottrell and M Hillery, Phys. Rev. Lett. 116, 160406 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    T Qureshi and M A Siddiqui, Ann. Phys. 385, 598 (2017)Google Scholar
  33. 33.
    U Sinha, C Couteau, T Jennewein, R Laflamme and G Weihs, Science (5990), 418 (2010)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    J von Neumann, Mathematical foundations of quantum mechanics (Princeton University Press, 1955)Google Scholar
  35. 35.
    M Kaur, B Arora and M Mian, Pramana – J. Phys. 86, 31 (2016)Google Scholar
  36. 36.
    M Beau and T C Dorlas, Int. J. Theor. Phys. 54, 1882 (2015)CrossRefGoogle Scholar
  37. 37.
    T Qureshi and Z Rahman, Prog. Theor. Phys. 127, 71 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2017

Authors and Affiliations

  1. 1.Department of PhysicsJamia Millia IslamiaNew DelhiIndia
  2. 2.Centre for Theoretical PhysicsJamia Millia IslamiaNew DelhiIndia

Personalised recommendations