Advertisement

Pramana

, 89:49 | Cite as

Solitary wave solutions of two-dimensional nonlinear Kadomtsev–Petviashvili dynamic equation in dust-acoustic plasmas

  • Aly R SeadawyEmail author
Article

Abstract

Nonlinear two-dimensional Kadomtsev–Petviashvili (KP) equation governs the behaviour of nonlinear waves in dusty plasmas with variable dust charge and two temperature ions. By using the reductive perturbation method, the two-dimensional dust-acoustic solitary waves (DASWs) in unmagnetized cold plasma consisting of dust fluid, ions and electrons lead to a KP equation. We derived the solitary travelling wave solutions of the two-dimensional nonlinear KP equation by implementing sech–tanh, sinh–cosh, extended direct algebraic and fraction direct algebraic methods. We found the electrostatic field potential and electric field in the form travelling wave solutions for two-dimensional nonlinear KP equation. The solutions for the KP equation obtained by using these methods can be demonstrated precisely and efficiency. As an illustration, we used the readymade package of Mathematica program 10.1 to solve the original problem. These solutions are in good agreement with the analytical one.

Keywords

Magnetized plasma dust-acoustic solitary waves Kadomtsev–Petviashvili equation mathematical methods 

PACS Nos

02.30.Jr 47.10.A– 52.25.Xz 52.35.Fp 

References

  1. 1.
    F Verheest, Waves in dusty space plasmas (Kluwer Academic Publishers, Dordrecht, 2000)CrossRefGoogle Scholar
  2. 2.
    P K Shukla and A A Mamun, Introduction to dusty plasma physics (Institute of Physics Publishing, Bristol, UK, 2002)Google Scholar
  3. 3.
    A P Misra and Y Wang, Commun. Nonlinear Sci. Numer. Simulat. 22, 1360 (2015)Google Scholar
  4. 4.
    H Alinejad, Phys. Lett. A 375, 1005 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    A R Seadawy, Comput. Math. Appl. 67, 172 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    A R Seadawy, Phys. Plasmas 21, 052107 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    A R Seadawy, Physica A 439, 124 (2015)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    P K Shukla and M Y Yu, J. Math. Phys. 19, 2506 (1978)ADSCrossRefGoogle Scholar
  9. 9.
    C Yinhua and M Y Yu, Phys. Plasmas 1, 1868 (1994)ADSCrossRefGoogle Scholar
  10. 10.
    S G Tagare, Phys. Plasmas 4, 3167 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    G C Das, S G Tagare and J Sarma, Planet. Space Sci. 46(4), 417 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    C R Choi, C-M Ryu, D-Y Leea, N C Lee and Y-H Kim, Phys. Lett. A 364, 297 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    M M Lin and W S Duan, Chaos, Solitons and Fractals 33, 1189 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    S Singh and T Honzawa, Phys. Fluids B 5, 2093 (1993)ADSCrossRefGoogle Scholar
  15. 15.
    A R Seadawy, Eur. Phys. J. Plus, 130 (2015)Google Scholar
  16. 16.
    T S Gill, N S Saini and H Kaur, Chaos, Solitons and Fractals 28, 1106 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    A R Seadawy, Comput. Math. Appl. 71, 201 (2016)MathSciNetCrossRefGoogle Scholar
  18. 18.
    E K El-Shewy, M I Abo el Maaty, H G Abdelwahed and M A Elmessary, Astrophys. Space Sci. 332, 179 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    D Dorranian and A Sabetkar, Phys. Plasmas 19, 013702 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    N S Saini, N Kaur and T S Gill, Adv. Space Res. 55, 2873 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    A R Seadawy, Comp. Math. Appl. 62, 3741 (2011)MathSciNetCrossRefGoogle Scholar
  22. 22.
    A R Seadawy, Appl. Math. Sci. 6, 4081 (2012)MathSciNetGoogle Scholar
  23. 23.
    A R Seadawy and K El-Rashidy, Math. Comp. Model. 57, 1371 (2013)Google Scholar
  24. 24.
    A R Seadawy, Appl. Math. Lett. 25, 687 (2012)MathSciNetCrossRefGoogle Scholar
  25. 25.
    A R Seadawy, Comp. Math. Appl. 70, 345 (2015)MathSciNetCrossRefGoogle Scholar
  26. 26.
    A H Khater, D K Callebaut, W Malfliet and A R Seadawy, Phys. Scr. 64, 533 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    A H Khater, D K Callebaut and A R Seadawy, Phys. Scr. 67, 340 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    H R Pakzad and K Javidan, Chaos, Solitons and Fractals 42, 2904 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    A R Seadawy, Physica A 455, 44 (2016)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    A R Seadawy and K El-Rashidy, Pramana – J. Phys. 87, 20 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2017

Authors and Affiliations

  1. 1.Mathematics Department, Faculty of ScienceTaibah UniversityAl-UlaSaudi Arabia
  2. 2.Mathematics Department, Faculty of ScienceBeni-Suef UniversityBeni SuefEgypt

Personalised recommendations