, 87:53 | Cite as

A generic travelling wave solution in dissipative laser cavity



A large family of cosh-Gaussian travelling wave solution of a complex Ginzburg–Landau equation (CGLE), that describes dissipative semiconductor laser cavity is derived. Using perturbation method, the stability region is identified. Bifurcation analysis is done by smoothly varying the cavity loss coefficient to provide insight of the system dynamics. He’s variational method is adopted to obtain the standard sech-type and the not-so-explored but promising cosh-Gaussian type, travelling wave solutions. For a given set of system parameters, only one sech solution is obtained, whereas several distinct solution points are derived for cosh-Gaussian case. These solutions yield a wide variety of travelling wave profiles, namely Gaussian, near-sech, flat-top and a cosh-Gaussian with variable central dip. A split-step Fourier method and pseudospectral method have been used for direct numerical solution of the CGLE and travelling wave profiles identical to the analytical profiles have been obtained. We also identified the parametric zone that promises an extremely large family of cosh-Gaussian travelling wave solutions with tunable shape. This suggests that the cosh-Gaussian profile is quite generic and would be helpful for further theoretical as well as experimental investigation on pattern formation, pulse dynamics and localization in semiconductor laser cavity.


Complex Ginzburg–Landau equation dissipative system stability analysis He’s variational method cosh-Gaussian travelling wave solution. 


42.65.−k 42.65.Sf 42.65.Tg 


  1. [1]
    N N Akhmediev and A Ankiewicz, Solitons: Nonlinear pulses and beams (Chapman and Hall, London, 1997)MATHGoogle Scholar
  2. [2]
    N B Abraham and W J Firth, J. Opt. Soc. Am. B 7, 951 (1990)ADSCrossRefGoogle Scholar
  3. [3]
    T Ackemann and W Lange, Appl. Phys. B 72, 21 (2001)ADSCrossRefGoogle Scholar
  4. [4]
    F T Arecchi, S Boccaletti and P L Ramazza, Phys. Rep. 318, 1 (1999)ADSCrossRefGoogle Scholar
  5. [5]
    J Ross, S C Muller and C Vidal, Science 240, 460 (1999)ADSCrossRefGoogle Scholar
  6. [6]
    A C Newell, Solitons in mathematics and physics (SIAM, Philadelphia, USA, 1985)CrossRefMATHGoogle Scholar
  7. [7]
    J D Murray, Mathematical biology: Spatial models and biomedical applications, 3rd edn (Springer, Berlin, 2007)Google Scholar
  8. [8]
    N N Akhmediev and A Ankiewicz, Dissipative solitons: Lecture notes in physics (Springer, Berlin, 2005) Vol. 661Google Scholar
  9. [9]
    T Ackemann, W J Firth and G L Oppo, Adv. At., Mol. and Opt. Phys. 57, 323 (2009)ADSCrossRefGoogle Scholar
  10. [10]
    K Iga, IEEE J. Sel. Top. Quant. Electron. 6, 1201 (2000)CrossRefGoogle Scholar
  11. [11]
    M van-Hecke, Phys. Rev. Lett. 80, 1896 (1998)ADSCrossRefGoogle Scholar
  12. [12]
    W van-Saarloos, The complex Ginzburg–Landau equation for beginners, Spatio-temporal patterns in nonequilibrium complex systems: Proceedings of the Santa Fe workshop edited by P E Cladis and P Palffy-Muhoray (Addison-Wesley, Chicago, 1994) pp. 19–31Google Scholar
  13. [13]
    G Dangelmayr and L Kramer, Mathematical tools for pattern formation, Evolution of spontaneous structures in dissipative continuous systems edited by F H Busse and S C Mueller (Springer, New York, 1998) pp. 1–85Google Scholar
  14. [14]
    A Doelman, J. Nonlin. Sci. 3, 225 (1993)ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    H Chate, Nonlinearity 7, 185 (1994)ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    P V Paulau, A J Scroggie, A Naumenko, T Ackemann, N A Loiko and W J Firth, Phys. Rev. E 75, 056208(1) (2007)ADSCrossRefGoogle Scholar
  17. [17]
    K A Montgomery and M Silber, Nonlinearity 17, 2225 (2004)ADSMathSciNetCrossRefGoogle Scholar
  18. [18]
    J Xiao, G Hu, J Yang and J Gao, Phys. Rev. Lett. 81, 5552 (1998)ADSCrossRefGoogle Scholar
  19. [19]
    Y Kuramoto and T Tsuzuki, Prog. Theor. Phys. 55, 356 (1976)ADSCrossRefGoogle Scholar
  20. [20]
    I S Aranson and L Kramer, Rev. Mod. Phys. 74, 99 (2002)ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    W van-Saarloos and P C Hohenberg, Physica D 56, 303 (1992)ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    J D Anderson, R A Ryan, M Wu and L D Carr, New J. Phys. 16, 023025(1) (2014)ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    Y Tanguy, T Ackemann, W J Firth and R Jager, Phys. Rev. Lett. 100, 013907(1) (2008)ADSCrossRefGoogle Scholar
  24. [24]
    N Radwell and T Ackemann, IEEE J. Quant. Electron. 45, 1388 (2009)ADSCrossRefGoogle Scholar
  25. [25]
    A J Scroggie, W J Firth and G L Oppo, Phys. Rev. A 80, 013829(1) (2009)ADSCrossRefGoogle Scholar
  26. [26]
    P V Paulau, D Gomila, T Ackemann, N A Loiko and W J Firth, Phys. Rev. E 78, 016212(1) (2008)ADSCrossRefGoogle Scholar
  27. [27]
    P Zhong, R Yang and G Yang, Phys. Lett. A 373, 19 (2008)ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    H Cong, J Liu and X Yuan, J. Math. Phys. 50, 063516(1) (2009)ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    R Deissler and H R Brand, Phys. Rev. Lett. 72, 478 (1992)ADSCrossRefGoogle Scholar
  30. [30]
    W J Firth and P V Paulau, Eur. Phys. J. D 59, 13 (2010)ADSCrossRefGoogle Scholar
  31. [31]
    B A Malomed and A A Nepomnyashchy, Phys. Rev. A 42, 6009 (1990)ADSCrossRefGoogle Scholar
  32. [32]
    V Skarka, N B Aleksic, H Leblond, B A Malomed and D Mihalache, Phys. Rev. Lett. 105, 213901(1) (2010)ADSCrossRefGoogle Scholar
  33. [33]
    R Goh and A Scheel, J. Nonlinear Sci. 24, 117 (2014)ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    A V Porubov and M G Velarde, J. Math. Phys. 40, 884 (1999)ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    L I U Cheng-Shi, Commun. Theory. Phys. 43, 787 (2005)ADSCrossRefGoogle Scholar
  36. [36]
    R Conte and M Musette, Physica D 69, 1 (1993)ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    K Nozaki and N Bekki, J. Phys. Soc. Jpn 53, 1581 (1984)ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    L I Hua-Mei, L I N Ji and X U You-Sheng, Commun. Theor. Phys. 44, 79 (2005)ADSCrossRefGoogle Scholar
  39. [39]
    V Skarka and N B Aleksic, Phys. Rev. Lett. 96, 013903(1) (2006)ADSCrossRefGoogle Scholar
  40. [40]
    W Bao, Q Du and Y Zhang, SIAM J. Appl. Math. 67, 1740 (2007)MathSciNetCrossRefGoogle Scholar
  41. [41]
    J H He, Int. J. Mod. Phys. B 20, 1141 (2006)ADSCrossRefGoogle Scholar
  42. [42]
    H K Khalil, Nonlinear systems 3rd edn (Prentice Hall, USA, 2002)Google Scholar
  43. [43]
    D Puzyrev, S Yanchuk, A G Vladimirov and S V Gurevich, SIAM J. Appl. Dyn. Syst. 13, 986 (2014)MathSciNetCrossRefGoogle Scholar
  44. [44]
    B Janiaud, A Pumir, D Bensimon and V Choquette, Physica D 55, 269 (1992)ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    A N W Hone, Physica D 205, 292 (2005)ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    V García-Morales and K Krischer, Contemp. Phys. 53, 79 (2012)ADSCrossRefGoogle Scholar
  47. [47]
    S Liu, S Liu, Z Fu and Q Zhao, Chaos, Solitons and Fractals 13, 1377 (2002)ADSMathSciNetCrossRefGoogle Scholar
  48. [48]
    S Charkrit, Proceedings of World Congress of Engineering (London, UK, July 2013) pp. 156–160Google Scholar
  49. [49]
    G P Agrawal, Nonlinear fiber optics, 4th edn (Academic Press, San Diego, USA, 2001)Google Scholar
  50. [50]
    S Konar and S Jana, Opt. Commun. 236, 7 (2004)ADSCrossRefGoogle Scholar
  51. [51]
    A Biswas, PIER 96, 1 (2009)CrossRefGoogle Scholar
  52. [52]
    S Jana and S Konar, Opt. Commun. 267, 24 (2006)ADSCrossRefGoogle Scholar
  53. [53]
    S M Cox and P C Matthews, J. Comput. Phys. 176, 430 (2002)ADSMathSciNetCrossRefGoogle Scholar
  54. [54]
    D M Winterbottom, Pattern formation with a conservation law, Ph.D. thesis (The University of Nottingham, England, 2006)Google Scholar

Copyright information

© Indian Academy of Sciences 2016

Authors and Affiliations

  1. 1.School of Physics and Materials ScienceThapar UniversityPatialaIndia

Personalised recommendations