Pramana

, Volume 85, Issue 6, pp 1111–1122 | Cite as

Painlevé analysis and some solutions of variable coefficient Benny equation

Article

Abstract

In this paper, variable coefficient Benny equation (also called the KdV Burgers–Kuramoto equation) has been considered. By using the Painlevé analysis and Lie group analysis methods, the Painlevé properties and symmetries have been studied. Some solutions of the reduced ODEs are obtained.

Keywords

Exact travelling wave solutions; nonlinear physical models. 

PACS Nos

04.20.Jb 02.30.Jr 02.30.Hq 

References

  1. [1]
    G Teschl, Math. Nach. 202, 163 (1999)Google Scholar
  2. [2]
    R Kawata and R R Inoue, J. Phys. Soc. Jpn 44, 1722 (1979)Google Scholar
  3. [3]
    A R Chowdhury, Lett. Math. Phys. 7, 313 (1983)Google Scholar
  4. [4]
    J Satsuma and D J Kaup, J. Phys. Soc. Jpn 43, 692 (1977)Google Scholar
  5. [5]
    R Hirota, J. Phys. Soc. Jpn 33, 1459 (1972)Google Scholar
  6. [6]
    G W Bluman and S Kumei, Symmetries and differential equations (Springer-Verlag, Berlin, 1989)Google Scholar
  7. [7]
    P J Olver, Applications of Lie groups to differential equations (Springer-Verlag, New York, 1993)Google Scholar
  8. [8]
    N H Ibragimov, Transformation groups applied to mathematical physics (Nauka, Moscow, 1983)Google Scholar
  9. [9]
    S Lie, Vorlesungen Über Differentialgliechurger mit Bekannten Infinitesimalen Transformationen (Teuber, Leipzig, 1891)Google Scholar
  10. [10]
    S Lie, Arch. Math. 6, 328 (1881)Google Scholar
  11. [11]
    R K Gupta and K Singh, Commun. Nonlinear Sci. Numer. Simul. 16, 4189 (2011)Google Scholar
  12. [12]
    J Weiss, J. Math. Phys. 24, 1405 (1983)Google Scholar
  13. [13]
    J Weiss, M Tabor and G Carnevale, J. Math. Phys. 24, 522 (1983)Google Scholar
  14. [14]
    T Kobayashi and K Toda, SIGMA 2, 63 (2006)Google Scholar
  15. [15]
    M Jimbo, M D Kruskal and T Miwa, Phys. Lett. A 92, 59 (1982)Google Scholar
  16. [16]
    R Conte, Phys. Lett. A 140, 383 (1989)Google Scholar
  17. [17]
    N H Ibragimov, V F Kovalev and V V Pustovalov, Nonlinear Dyn. 28, 135 (2002)Google Scholar
  18. [18]
    E J Parkes and B R Duffy, Comput. Phys. Commun. 98, 288 (1996)Google Scholar
  19. [19]
    D J Korteweg and G de Vries, Philos. Mag. 39, 422 (1895)Google Scholar
  20. [20]
    R S Johnson, J. Fluid Mech. 42, 49 (1970)Google Scholar
  21. [21]
    Z Feng, Nonlinearity 20, 343 (2007)Google Scholar
  22. [22]
    Y Kuramoto and T Tsuzuki, Prog. Theor. Phys. 55, 356 (1976)Google Scholar
  23. [23]
    M J Burgers, Trans. R. Neth. Acad. Sci. 17, 1 (1939)Google Scholar
  24. [24]
    S J Yu and K Toda, J. Nonlinear Math. Phys. 7, 1 (2000)Google Scholar
  25. [25]
    K Singh and R K Gupta, Int. J. Math. Sci. 23, 3711 (2005)Google Scholar
  26. [26]
    M L Wang, J L Zhang and X Z Li, Phys. Lett. A 372, 417 (2008)Google Scholar
  27. [27]
    H Kheiri, M R Moghaddam and V Vafaei, Pramana – J. Phys. 76, 831 (2011)Google Scholar
  28. [28]
    A Bansal and R K Gupta, Math. Meth. Appl. Sci. 35, 1175 (2012)Google Scholar
  29. [29]
    S Kumar, K Singh and R K Gupta, Pramana – J. Phys. 79, 41 (2012)Google Scholar
  30. [30]
    A M Wazwaz, Phys. D: Nonlinear Phenomena 213, 147 (2006)Google Scholar
  31. [31]
    S A El-Wakil and M A Abdou, Chaos, Solitons and Fractals 31, 840 (2007)Google Scholar

Copyright information

© Indian Academy of Sciences 2015

Authors and Affiliations

  1. 1.Department of MathematicsMaharishi Markandeshwar UniversityAmbalaIndia
  2. 2.School of Mathematics and Computer ApplicationsThapar UniversityPatialaIndia

Personalised recommendations