Pramana

, Volume 82, Issue 1, pp 97–109

Ultrashort laser pulse–matter interaction: Implications for high energy materials

Article
  • 256 Downloads

Abstract

The interaction of ultrashort [nanosecond (ns)/picosecond (ps)/femtosecond (fs)] pulses with materials is an exhaustive area of research with underlying, and often extremely rich, physics along with a plethora of applications evolving from it. High-energy materials (HEMs) are chemical compounds or mixture of compounds which, under suitable initiation, undergoes a very rapid exothermic and self-propagating decomposition. Herein, we describe the interaction of laser pulses with materials and its implications for studies on HEMs in four parts: (a) ns and fs laser-induced breakdown spectroscopic (LIBS) studies of HEMs towards understanding the molecular dynamics and discrimination, (b) ps/fs pulses interaction with metallic solids towards the production of nanoparticles, nanostructures and their utility in identifying explosive molecules using surface-enhanced Raman scattering studies, (c) interaction of laser pulses with the bulk and surface of glasses and polymers producing micro- and nanostructures for microfluidic/lab-on-a-chip applications, and (d) ultrafast spectroscopic studies for comprehending the excited state dynamics towards elucidation of vibrational dynamics in HEMs. Several applications resulting from these interactions will be discussed in detail.

Keywords

Ultrashort laser pulses laser-induced breakdown spectroscopy ablation laser direct writing pump–probe technique high-energy materials 

PACS Nos

82.53.Uv 42.62.Fi 52.50.Jm 52.38.−r 79.20.Eb 52.38.Mf 

References

  1. [1]
    U Keller, Nature 424, 831 (2003)Google Scholar
  2. [2]
    G Cerullo and S De Silvestri, Rev. Sci. Instrum. 74, 1 (2003)Google Scholar
  3. [3]
    J R Vázquez de Aldana, P Moreno and L Roso, Opt. Mater. 34, 572 (2012)Google Scholar
  4. [4]
    E G Gamaly, Phys. Rep. 508, 91 (2011)Google Scholar
  5. [5]
    G Ravindra Kumar, Pramana – J. Phys. 73, 113 (2009)Google Scholar
  6. [6]
    M Dantus and V V Lozovoy, Chem. Rev. 104, 1813 (2004)Google Scholar
  7. [7]
    A Vogel, J Noack, G Huttman and G Paltauf, Appl. Phys. B 81, 1015 (2005)Google Scholar
  8. [8]
    C B Schaffer, A Brodeur and E Mazur, Meas. Sci. Technol. 12, 1784 (2001)Google Scholar
  9. [9]
    M R Leahy-Hoppa, J Miragliotta, R Osiander, J Burnett, Y Dikmelik, C McEnnis and J B Spicer, Sensors 10, 4342 (2010)Google Scholar
  10. [10]
    A Bhattacharya, Y Guo and E R Bernstein, Acc. Chem. Res. 43(12), 1476 (2010)Google Scholar
  11. [11]
    A Bhattacharya, Y Guo and E R Bernstein, J. Chem. Phys. 136, 024321 (2012)Google Scholar
  12. [12]
    Y Guo, A Bhattacharya and E R Bernstein, J. Phys. Chem. A 115, 9349 (2011)Google Scholar
  13. [13]
    M Greenfield, Y Q Guo and E R Bernstein, Chem. Phys. Lett. 430, 277 (2006)Google Scholar
  14. [14]
    A Strachan, A C T van Duin, D Chakraborty, S Dasgupta and W A Goddard III, Phys. Rev. Lett. 91(9), 098301 (2003)Google Scholar
  15. [15]
    R W Conner and Dana D Dlott, J. Phys. Chem. C 116, 14737 (2012)Google Scholar
  16. [16]
    S Shigeto, Y Pang, Y Fang and Dana D Dlott, J. Phys. Chem. B 112, 232 (2008)Google Scholar
  17. [17]
    Dana D Dlott, Annu. Rev. Phys. Chem. 50, 251 (1999)Google Scholar
  18. [18]
    Dana D Dlott, Annu. Rev. Phys. Chem. 62, 575 (2011)Google Scholar
  19. [19]
    S Sreedhar, M Ashwin Kumar, G Manoj Kumar, P Prem Kiran, Surya P Tewari and S Venugopal Rao, ISRN Optics, Article ID 631504, 2012, DOI: 10.5402/2012/631504
  20. [20]
    M Ashwin Kumar, S Sreedhar, I Barman, N C Dingari, S Venugopal Rao, P Prem Kiran, Surya P Tewari and G Manoj Kumar, Talanta 87, 53 (2011)Google Scholar
  21. [21]
    S Sreedhar, G Manoj Kumar, M Ashwin Kumar, P Prem Kiran, Surya P Tewari and S Venugopal Rao, Spectrochim. Acta 79–80, 31 (2012)Google Scholar
  22. [22]
    S Sreedhar, E Nageswara Rao, G Manoj Kumar, Surya P Tewari and S Venugopal Rao, Spectrochim. Acta 87, 121 (2013), http://dx.doi.org/10.1016/j.sab.2013.05.006
  23. [23]
    E Nageswara Rao, S Sreedhar, G Manoj Kumar, Surya P Tewari and S Venugopal Rao, in: Chemical, biological, radiological, nuclear, and explosives (CBRNE) sensing XIV edited by A W Fountain, Proc. SPIE 8710, 87101O (2013)Google Scholar
  24. [24]
    S Sreedhar, E Nageswara Rao, G Manoj Kumar, Surya P Tewari and S Venugopal Rao, in: Chemical, biological, radiological, nuclear, and explosives (CBRNE) sensing XIV edited by A W Fountain, Proc. SPIE 8710, 871012 (2013)Google Scholar
  25. [25]
    S Sreedhar, E Nageswara Rao, G Manoj Kumar, Surya P Tewari and S Venugopal Rao, Next-generation spectroscopic technologies VI edited by M A Druy and R A Crocombe, Proc. SPIE 8726, 87260H (2013)Google Scholar
  26. [26]
    D W Hahn and N Omenetto, Appl. Spectrosc. 64, 335A (2010)Google Scholar
  27. [27]
    D W Hahn and N Omenetto, Appl. Spectrosc. 66, 347 (2012)Google Scholar
  28. [28]
    M Civis, S Civis, K Sovova, K Dryahina, P Spanel and M Kyncl, Anal. Chem. 83, 1069 (2011)Google Scholar
  29. [29]
    G Krishna Podagatlapalli, S Hamad, S Sreedhar, Surya P Tewari and S Venugopal Rao, Chem. Phys. Lett. 530, 93 (2012)Google Scholar
  30. [30]
    G Krishna Podagatlapalli, S Hamad, S Sreedhar, Surya P Tewari and S Venugopal Rao, J. Appl. Phys. 113, 073106 (2013)Google Scholar
  31. [31]
    S Hamad, G Krishna Podagatlapalli, Surya P Tewari, and S Venugopal Rao, J. Phys. D: Appl. Phys. 46, 485501 (2013)Google Scholar
  32. [32]
    S Hamad, G Krishna Podagatlapalli, Surya P Tewari and S Venugopal Rao, Proc. SPIE 8245, 82450L (2012)Google Scholar
  33. [33]
    S Hamad, G K Podagatlapalli, A Hussain, N Ahmed, S Sreedhar, Surya P Tewari and S Venugopal Rao, in International Conference on Fibre Optics and Photonics, OSA Technical Digest (online) (Optical Society of America, 2012), MPo.31. http://www.opticsinfobase.org/abstract.cfm?URI=Photonics-2012-MPo.31
  34. [34]
    R R Gattass and E Mazur, Nat. Phot. 2, 219 (2008)Google Scholar
  35. [35]
    K L N Deepak, D Narayana Rao and S Venugopal Rao, Laser-induced damage in optical materials edited by G J Exarhos, V E Gruzdev, J A Menapace, D Ristau and M J Soileau, Proc. SPIE 8530, 853004 (2012)Google Scholar
  36. [36]
    K L N Deepak, S Venugopal Rao and D Narayana Rao, Opt. Eng. 51, 073402 (2012)Google Scholar
  37. [37]
    K L N Deepak, S Venugopal Rao and D Narayana Rao, Laser pulses edited by Igor Peshko (InTech Publishers, Croatia, 2012) pp. 277-294, ISBN 979-953-307-845-7Google Scholar
  38. [38]
    K L N Deepak, R Kuladeep, S Venugopal Rao and D Narayana Rao, Rad. Effects Defects Solids 167(2), 88 (2012)Google Scholar
  39. [39]
    K L N Deepak, D Narayana Rao and S Venugopal Rao, Appl. Opt. 49(13), 2475 (2010)Google Scholar
  40. [40]
    K L N Deepak, S Venugopal Rao and D Narayana Rao, Appl. Surf. Sci. 257, 9299 (2011)Google Scholar
  41. [41]
    K L N Deepak, R Kuladeep, V Praveen Kumar, S Venugopal Rao and D Narayana Rao, Opt. Commun. 284(12), 3074 (2011)Google Scholar
  42. [42]
    K L N Deepak, S Venugopal Rao and D Narayana Rao, Chem. Phys. Lett. 503, 57 (2011)Google Scholar
  43. [43]
    K L N Deepak, S Venugopal Rao and D Narayana Rao, Pramana – J. Phys. 75(6), 1221 (2010)Google Scholar
  44. [44]
    K L N Deepak, S Venugopal Rao and D Narayana Rao, Proc. SPIE 8190, 81900R (2011)Google Scholar
  45. [45]
    K C Vishnubhatla, S Venugopal Rao, R Sai Santosh Kumar, M Ferrari and D Narayana Rao, Opt. Commun. 282, 4537 (2009)Google Scholar
  46. [46]
    K C Vishnubhatla, S Venugopal Rao, R Sai Santosh Kumar, R Osellame, S N B Bhaktha, S Turrell, A Chiappini, A Chiasera, M Ferrari, M Mattarelli, M Montagna, R Ramponi, G C Righini and D Narayana Rao, J. Phys. D.: Appl. Phys. 42, 205106 (2009)Google Scholar
  47. [47]
    S Venugopal Rao, D Swain and Surya P Tewari, in Organic photonic materials and devices XII edited by R L Nelson, F Kajzar and T Kaino, Proc. SPIE 7599, 75991P (2010)Google Scholar
  48. [48]
    D Swain, A Rana, P K Panda and S Venugopal Rao, Proc. SPIE 8258, 82581B (2012)Google Scholar
  49. [49]
    D Swain, P T Anusha, T S Prashant, T Sarma, P K Panda, S P Tewari and S Venugopal Rao, Appl. Phys. Lett. 100, 141109 (2012)Google Scholar
  50. [50]
    P T Anusha, D Swain, S Hamad, L Giribabu, T S Prashant, Surya P Tewari and S Venugopal Rao, J. Phys. Chem. C 116, 17828 (2012)Google Scholar
  51. [51]
    S Venugopal Rao, P T Anusha and Surya P. Tewari, in International Conference on Fibre Optics and Photonics, OSA Technical Digest (online) (Optical Society of America, 2012), paper TPo.5. http://www.opticsinfobase.org/abstract.cfm?URI=Photonics-2012-TPo.5
  52. [52]
    S Venugopal Rao, T Shuvan Prashant, D Swain, T Sarma, P K Panda and S P Tewari, Chem. Phys. Lett. 514, 98 (2011)Google Scholar
  53. [53]
    T Sarma, Pradeepta K Panda, P T Anusha and S Venugopal Rao, Org. Lett. 13(2), 188 (2011)Google Scholar
  54. [54]
    R S S Kumar, S Venugopal Rao, L Giribabu and D Narayana Rao, Opt. Mat. 31, 1042 (2009)Google Scholar
  55. [55]
    S Venugopal Rao, N Venkatram, L Giribabu and D Narayana Rao, J. Appl. Phys. 105, 053109 (2009)Google Scholar
  56. [56]
    N Venkatram, L Giribabu, D Narayana Rao and S Venugopal Rao, Chem. Phys. Lett. 464, 211 (2008)Google Scholar
  57. [57]
    R S S Kumar, S Venugopal Rao, L Giribabu and D Narayana Rao, Chem. Phys. Lett. 447, 274 (2007)Google Scholar
  58. [58]
    N Venkatram, L Giribabu, D Narayana Rao and S Venugopal Rao, Appl. Phys. B 91, 149 (2008)Google Scholar
  59. [59]
    P T Anusha, L Giribabu, Surya P Tewari and S Venugopal Rao, Mater. Lett. 64, 1915 (2010)Google Scholar
  60. [60]
    S Venugopal Rao, P T Anusha, L Giribabu and Surya P Tewari, Pramana – J. Phys. 75(5), 1017 (2010)Google Scholar
  61. [61]
    D Swain, R Singh, V K Singh, N V Krishna, L Giribabu, S Venugopal Rao, J. Mater. Chem. C (in press) (2014), DOI: 10.1039/C3TC31640H
  62. [62]
    S Venugopal Rao, J. Mod. Opt. 58(12), 1024 (2011)Google Scholar
  63. [63]
    S Hamad, Surya P Tewari, L Giribabu and S Venugopal Rao, J. Porphy. Phth. 16(1), 140 (2012)Google Scholar
  64. [64]
    D Swain, P T Anusha, T Sarma, P K Panda and S Venugopal Rao, Chem. Phys. Lett. 580, 73 (2013)Google Scholar
  65. [65]
    S D McGrane, A Grieco, K J Ramos, D E Hooks and D S Moore, J. Appl. Phys. 105, 073505 (2009)Google Scholar
  66. [66]
    S Wallin, A Pettersson, H Ostmark and A Hobro, Anal. Bioanal. Chem. 395, 259 (2009)Google Scholar
  67. [67]
    B Wen and H Eilers, Appl. Phys. B 106, 473 (2012)Google Scholar
  68. [68]
    J S Caygill, F Davis and S P J Higson, Talanta 88, 14 (2012)Google Scholar
  69. [69]
    M Bremer, P Wrzesinski, N Butcher, V V Lozovoy and M Dantus, Appl. Phys. Lett. 99, 101109 (2011)Google Scholar
  70. [70]
    H Li, D A Harris, B Xu, P J Wrzesinski, V V Lozovoy and M Dantus, Opt. Exp. 16, 5499 (2008)Google Scholar
  71. [71]
    J L Gottfried, F C De Lucia Jr, C A Munson and A W Miziolek, J. Anal. At. Spectrom. 23, 205 (2008)Google Scholar
  72. [72]
    J L Gottfried, F C De Lucia Jr, C A Munson and A W Miziolek, Anal. Bioanal. Chem. 395, 283 (2009)Google Scholar
  73. [73]
    P Lucena, A Doña, L M Tobaria and J J Laserna, Spectrochim. Acta Part B 66, 12 (2011)Google Scholar
  74. [74]
    J E Patterson, Z A Dreger, M Miao and Y M Gupta, J. Phys. Chem. A 112, 7374 (2008)Google Scholar
  75. [75]
    N C Dang, Z A Dreger, Y M Gupta and D E Hooks, J. Phys. Chem. A 114(43), 11560 (2010)Google Scholar

Copyright information

© Indian Academy of Sciences 2014

Authors and Affiliations

  1. 1.Advanced Centre of Research in High Energy Materials (ACRHEM)University of HyderabadGachibowliIndia

Personalised recommendations