Pramana

, Volume 79, Issue 5, pp 1075–1090 | Cite as

Applications of the AdS/CFT correspondence

Article

Abstract

In this writeup of a talk delivered at the Lepton Photon Conference 2011, applications of the AdS/CFT correspondence in diverse areas of physics are reviewed.

Keywords

AdS/CFT gauge theory gravity string theory 

PACS Nos

11.15.−q 11.25.−w 11.10.kk 

References

  1. [1]
    G t’Hooft, Nucl. Phys. B72, 461 (1974)MathSciNetADSGoogle Scholar
  2. [2]
    J M Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998), hep-th/9711200 MathSciNetADSMATHGoogle Scholar
  3. [3]
    J Polchinski, Introduction to gauge/gravity duality, arXiv:1010.6134
  4. [4]
    J Maldacena, The gauge/gravity duality, arXiv:1106.6073
  5. [5]
    J M Maldacena, TASI 2003 Lectures on AdS/CFT, hep-th/0309246
  6. [6]
    O Aharony, S S Gubser, J M Maldacena, H Ooguri and Y Oz, Phys. Rep. 323, 183 (2000), hep-th/9905111 MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    G Policastro, D T Son and A O Starinets, J. High Energy Phys. 0209, 043 (2002), hep-th/0205052 MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    S Bhattacharyya, V E Hubeny, S Minwalla and M Rangamani, J. High Energy Phys. 0802, 045 (2008), arXiv:0712.2456 MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    D T Son and A O Starinets, Ann. Rev. Nucl. Part. Sci. 57, 95 (2007), arXiv:0704.0240 ADSCrossRefGoogle Scholar
  10. [10]
    M Rangamani, Class. Quant. Grav. 26, 224003 (2009), arXiv:0905.4352 MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    V E Hubeny, S Minwalla and M Rangamani, The fluid/gravity correspondence, arXiv:1107.5780
  12. [12]
    S Bhattacharyya, S Lahiri, R Loganayagam and S Minwalla, J. High Energy Phys. 0809, 054 (2008), arXiv:0708.1770 MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    N Banerjee, J Bhattacharya, S Bhattacharyya, S Dutta, R Loganayagam et al, J. High Energy Phys. 1101, 094 (2011), arXiv:0809.2596 ADSCrossRefGoogle Scholar
  14. [14]
    J Erdmenger, M Haack, M Kaminski and A Yarom, J. High Energy Phys. 0901, 055 (2009), arXiv:0809.2488 MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    D T Son and P Surowka, Phys. Rev. Lett. 103, 191601 (2009), arXiv:0906.5044 MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    N Banerjee, J Bhattacharya, S Bhattacharyya, S Jain, S Minwalla et al, J. High Energy Phys. 1209, 046 (2012), arXiv:1203.3544 ADSCrossRefGoogle Scholar
  17. [17]
    K Jensen, Phys. Rev. D85, 125017 (2012), arXiv:1203.3599 ADSGoogle Scholar
  18. [18]
    K Jensen, R Loganayagam and A Yarom, Thermodynamics, gravitational anomalies and cones, arXiv:1207.5824
  19. [19]
    S Bhattacharyya, J. High Energy Phys. 1207, 104 (2012), arXiv:1201.4654 ADSGoogle Scholar
  20. [20]
    K Jensen, M Kaminski, P Kovtun, R Meyer, A Ritz et al, Phys. Rev. Lett. 109, 101601 (2012), arXiv:1203.3556 ADSCrossRefGoogle Scholar
  21. [21]
    C Herzog, P Kovtun and D Son, Phys. Rev. D79, 066002 (2009), arXiv:0809.4870 MathSciNetADSGoogle Scholar
  22. [22]
    J Sonner and B Withers, Phys. Rev. D82, 026001 (2010), arXiv:1004.2707 ADSGoogle Scholar
  23. [23]
    S Bhattacharyya, S Jain, S Minwalla and T Sharma, Constraints on superfluid hydrodynamics from equilibrium partition functions, arXiv:1206.6106
  24. [24]
    J Bhattacharya, S Bhattacharyya and S Minwalla, J. High Energy Phys. 1104, 125 (2011), arXiv:1101.3332 ADSCrossRefGoogle Scholar
  25. [25]
    J Bhattacharya, S Bhattacharyya, S Minwalla and A Yarom, A theory of first order dissipative superfluid dynamics, arXiv:1105.3733
  26. [26]
    P Kovtun, D Son and A Starinets, Phys. Rev. Lett. 94, 111601 (2005), hep-th/0405231 ADSCrossRefGoogle Scholar
  27. [27]
    G Policastro, D T Son and A O Starinets, J. High Energy Phys. 0212, 054 (2002), hep-th/0210220 MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    S Bhattacharyya, V E Hubeny, R Loganayagam, G Mandal, S Minwalla et al, J. High Energy Phys. 0806, 055 (2008), arXiv:0803.2526 MathSciNetADSCrossRefGoogle Scholar
  29. [29]
    L J Dixon, J. Phys. A44, 454001 (2011), arXiv:1105.0771 ADSGoogle Scholar
  30. [30]
    R Britto, F Cachazo, B Feng and E Witten, Phys. Rev. Lett. 94, 181602 (2005), hep-th/0501052 MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    E Witten, Commun. Math. Phys. 252, 189 (2004), hep-th/0312171 MathSciNetADSMATHCrossRefGoogle Scholar
  32. [32]
    L F Alday and J M Maldacena, J. High Energy Phys. 0706, 064 (2007), arXiv:0705.0303 MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    N Berkovits and J Maldacena, J. High Energy Phys. 0809, 062 (2008), arXiv:0807.3196 MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    J Drummond, J Henn, V Smirnov and E Sokatchev, J. High Energy Phys. 0701, 064 (2007), hep-th/0607160 MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    Z Bern, M Czakon, L J Dixon, D A Kosower and V A Smirnov, Phys. Rev. D75, 085010 (2007), hep-th/0610248 MathSciNetADSGoogle Scholar
  36. [36]
    Z Bern, L J Dixon and V A Smirnov, Phys. Rev. D72, 085001 (2005), hep-th/0505205 MathSciNetADSGoogle Scholar
  37. [36a]
    Such amplitudes are forced to take the BDS form multiplied by a remainder function that is invariant under dual conformal transformations.Google Scholar
  38. [37]
    A B Goncharov, M Spradlin, C Vergu and A Volovich, Phys. Rev. Lett. 105, 151605 (2010), arXiv:1006.5703 MathSciNetADSCrossRefGoogle Scholar
  39. [38]
    L F Alday, D Gaiotto and J Maldacena, J. High Energy Phys. 1109, 032 (2011), arXiv:0911.4708 MathSciNetADSCrossRefGoogle Scholar
  40. [39]
    N Arkani-Hamed, J L Bourjaily, F Cachazo, S Caron-Huot and J Trnka, J. High Energy Phys. 1101, 041 (2011), arXiv:1008.2958 MathSciNetADSCrossRefGoogle Scholar
  41. [40]
    S Sachdev, The quantum phases of matter, arXiv:1203.4565
  42. [41]
    N Iqbal, H Liu and M Mezei, Lectures on holographic non-Fermi liquids and quantum phase transitions, arXiv:1110.3814.
  43. [42]
    T Faulkner, N Iqbal, H Liu, J McGreevy and D Vegh, From black holes to strange metals, arXiv:1003.1728
  44. [43]
    H Liu, J McGreevy and D Vegh, Phys. Rev. D83, 065029 (2011), arXiv:0903.2477 ADSGoogle Scholar
  45. [44]
    T Faulkner, H Liu, J McGreevy and D Vegh, Phys. Rev. D83, 125002 (2011), arXiv:0907.2694 ADSGoogle Scholar
  46. [45]
    K Goldstein, S Kachru, S Prakash and S P Trivedi, J. High Energy Phys. 1008, 078 (2010), arXiv:0911.3586 MathSciNetADSCrossRefGoogle Scholar
  47. [46]
    C Charmousis, B Gouteraux, B Kim, E Kiritsis and R Meyer, J. High Energy Phys. 1011, 151 (2010), arXiv:1005.4690 ADSCrossRefGoogle Scholar
  48. [47]
    N Iizuka, S Kachru, N Kundu, P Narayan, N Sircar et al, J. High Energy Phys. 1207, 193 (2012), arXiv:1201.4861 ADSCrossRefGoogle Scholar
  49. [48]
    A Donos and J P Gauntlett, Phys. Rev. D86, 064010 (2012), arXiv:1204.1734 ADSGoogle Scholar
  50. [48a]
    Many gravitational physicists had assumed that such solutions could not exist as they appear to violate no hair ‘theorems’; it turns out that all these theorems have loopholes that allow their circumvention. The first solutions of this sort were in fact discovered in the search of the AdS/CFT dual of a superfluid [49].Google Scholar
  51. [49]
    S S Gubser, Phys. Rev. D78, 065034 (2008), arXiv:0801.2977 ADSGoogle Scholar
  52. [50]
    G T Horowitz and M M Roberts, J. High Energy Phys. 0911, 015 (2009), arXiv:0908.3677 MathSciNetADSCrossRefGoogle Scholar
  53. [50a]
    It is also possible that the new light degrees of freedom are massive at finite N and so are an artifact of the large N approximation.Google Scholar
  54. [51]
    A Mikhailov, Nonlinear waves in AdS/CFT correspondence, hep-th/0305196
  55. [52]
    D Correa, J Henn, J Maldacena and A Sever, J. High Energy Phys. 1206, 048 (2012), arXiv:1202.4455 ADSCrossRefGoogle Scholar
  56. [53]
    S S Gubser, Nucl. Phys. A830, 657C (2009), arXiv:0907.4808 MathSciNetADSGoogle Scholar
  57. [54]
    J Casalderrey-Solana, H Liu, D Mateos, K Rajagopal and U A Wiedemann, Gauge/string duality, hot QCD and heavy ion collisions, arXiv:1101.0618
  58. [55]
    P M Chesler and L G Yaffe, Phys. Rev. Lett. 102, 211601 (2009), arXiv:0812.2053 MathSciNetADSCrossRefGoogle Scholar
  59. [56]
    S Bhattacharyya and S Minwalla, J. High Energy Phys. 0909, 034 (2009), arXiv:0904.0464 MathSciNetADSCrossRefGoogle Scholar
  60. [57]
    P M Chesler and L G Yaffe, Phys. Rev. D82, 026006 (2010), arXiv:0906.4426 ADSGoogle Scholar
  61. [58]
    E Caceres, A Kundu, B Muller, D Vaman and D-L Yang, Jet quenching and holographic thermalization, arXiv:1208.6368
  62. [59]
    E Witten, Adv. Theor. Math. Phys. 2, 505 (1998), hep-th/9803131 MathSciNetMATHGoogle Scholar
  63. [60]
    T Sakai and S Sugimoto, Prog. Theor. Phys. 113, 843 (2005), hep-th/0412141 ADSMATHCrossRefGoogle Scholar
  64. [60a]
    Depending on the quark masses the chiral symmetry restoration may occur at either the deconfinement transition temperature, or at a higher temperature. A simple bulk topological argument demonstrates the impossibility of chiral symmetry restoration below the deconfinement temperature (see e.g. [61,62])Google Scholar
  65. [61]
    O Aharony, J Sonnenschein and S Yankielowicz, Ann. Phys. 322, 1420 (2007), hep-th/0604161 MathSciNetADSMATHCrossRefGoogle Scholar
  66. [62]
    G Mandal and T Morita, J. Phys. Conf. Ser. 343, 012079 (2012), arXiv:1111.5190 ADSCrossRefGoogle Scholar
  67. [63]
    J Erlich, PoS CONFINEMENT8, 032 (2008), arXiv:0812.4976 Google Scholar
  68. [64]
    N Beisert, C Ahn, L F Alday, Z Bajnok, J M Drummond et al, Lett. Math. Phys. 99, 3 (2012), arXiv:1012.3982 MathSciNetADSCrossRefGoogle Scholar
  69. [65]
    V Pestun, Commun. Math. Phys. 313, 71 (2012), arXiv:0712.2824 MathSciNetADSMATHCrossRefGoogle Scholar
  70. [66]
    J Gomis, T Okuda and V Pestun, J. High Energy Phys. 1205, 141 (2012), arXiv:1105.2568 ADSCrossRefGoogle Scholar
  71. [67]
    O Aharony, O Bergman, D L Jafferis and J Maldacena, J. High Energy Phys. 0810, 091 (2008), arXiv:0806.1218 MathSciNetADSCrossRefGoogle Scholar
  72. [68]
    D Gaiotto and X Yin, J. High Energy Phys. 0708, 056 (2007), arXiv:0704.3740 MathSciNetADSCrossRefGoogle Scholar
  73. [69]
    N Drukker, M Marino and P Putrov, Commun. Math. Phys. 306, 511 (2011), arXiv:1007.3837 MathSciNetADSMATHCrossRefGoogle Scholar
  74. [70]
    D L Jafferis, J. High Energy Phys. 1205, 159 (2012), arXiv:1012.3210 MathSciNetADSCrossRefGoogle Scholar
  75. [71]
    A Kapustin, B Willett and I Yaakov, Tests of Seiberg-like duality in three dimensions, arXiv:1012.4021
  76. [72]
    J Bhattacharya, S Bhattacharyya, S Minwalla and S Raju, J. High Energy Phys. 0802, 064 (2008), arXiv:0801.1435 MathSciNetADSCrossRefGoogle Scholar
  77. [73]
    S Kim, Nucl. Phys. B821, 241 (2009), arXiv:0903.4172 ADSCrossRefGoogle Scholar
  78. [74]
    I Klebanov and A Polyakov, Phys. Lett. B550, 213 (2002), hep-th/0210114 MathSciNetADSGoogle Scholar
  79. [75]
    M R Gaberdiel and R Gopakumar, Minimal model holography, arXiv:1207.6697
  80. [76]
    S Giombi and X Yin, The higher spin/vector model duality, arXiv:1208.4036
  81. [77]
    S Giombi, S Minwalla, S Prakash, S P Trivedi, S R Wadia et al, Eur. Phys. J. C72, 2112 (2012), arXiv:1110.4386 Google Scholar
  82. [78]
    O Aharony, G Gur-Ari and R Yacoby, J. High Energy Phys. 1203, 037 (2012), arXiv:1110.4382 ADSCrossRefGoogle Scholar
  83. [79]
    S Jain, S P Trivedi, S R Wadia and S Yokoyama, Supersymmetric Chern–Simons theories with vector matter, arXiv:1207.4750
  84. [80]
    O Aharony, G Gur-Ari and R Yacoby, Correlation functions of large N Chern–Simons matter theories and bosonization in three dimensions, arXiv:1207.4593
  85. [81]
    J Maldacena and A Zhiboedov, Constraining conformal field theories with a higher spin symmetry, arXiv:1112.1016
  86. [82]
    J Maldacena and A Zhiboedov, Constraining conformal field theories with a slightly broken higher spin symmetry, arXiv:1204.3882
  87. [83]
    C-M Chang, S Minwalla, T Sharma and X Yin, ABJ triality: from higher spin fields to strings, arXiv:1207.4485
  88. [84]
    A Sen, Int. J. Mod. Phys. A24, 4225 (2009), arXiv:0809.3304 ADSGoogle Scholar
  89. [85]
    A Dabholkar and S Nampuri, Lect. Notes Phys. 851, 165 (2012), arXiv:1208.4814 MathSciNetADSCrossRefGoogle Scholar
  90. [86]
    L Randall and R Sundrum, Phys. Rev. Lett. 83, 4690 (1999), hep-th/9906064 MathSciNetADSMATHCrossRefGoogle Scholar
  91. [87]
    L Randall and R Sundrum, Phys. Rev. Lett. 83, 3370 (1999), hep-ph/9905221 MathSciNetADSMATHCrossRefGoogle Scholar
  92. [88]
    K Agashe, A Delgado, M J May and R Sundrum, J. High Energy Phys. 0308, 050 (2003), hep-ph/0308036 ADSCrossRefGoogle Scholar
  93. [89]
    T Takayanagi, Class. Quant. Grav. 29, 153001 (2012), arXiv:1204.2450 ADSCrossRefGoogle Scholar
  94. [90]
    M Headrick and T Takayanagi, Phys. Rev. D76, 106013 (2007), arXiv:0704.3719 MathSciNetADSGoogle Scholar
  95. [91]
    M Van Raamsdonk, Gen. Rel. Grav. 42, 2323 (2010), arXiv:1005.3035 ADSMATHCrossRefGoogle Scholar
  96. [92]
    J M Maldacena and G L Pimentel, J. High Energy Phys. 1109, 045 (2011), arXiv:1104.2846 ADSCrossRefGoogle Scholar
  97. [93]
    O Aharony, S Minwalla and T Wiseman, Class. Quant. Grav. 23, 2171 (2006), hep-th/0507219 MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2012

Authors and Affiliations

  1. 1.Department of Theoretical PhysicsTata Institute of Fundamental ResearchMumbaiIndia

Personalised recommendations