, Volume 79, Issue 1, pp 125–136 | Cite as

Electron transport in wurtzite InN



Using ensemble Monte Carlo simulation technique, we have calculated the transport properties of InN such as the drift velocity, the drift mobility, the average electron, energy relaxation times and momentum relaxation times at high electric field. The scattering mechanisms included scattering mechanisms are polar optical phonon, ionized impurity, acoustic phonon and intervalley phonon. It is found that the maximum peak velocity only occurs when the electric field is increased to a value above a certain critical field. This critical field is strongly dependent on InN parameters. The steady-state transport parameters are in fair agreement with other recent calculations.


InN transport mobility energy and momentum relaxation impurity scattering 




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H Morkoç, Nitride semiconductors and devices (Springer, New York, 1999)CrossRefGoogle Scholar
  2. [2]
    V Y Davydov et al, Phys. Status Solidi B230, R4 (2002)ADSCrossRefGoogle Scholar
  3. [3]
    J Wu et al, Appl. Phys. Lett. 80, 3967 (2002)ADSCrossRefGoogle Scholar
  4. [4]
    J Wu et al, Phys. Rev. B66, 201403 (2002)ADSGoogle Scholar
  5. [5]
    T Matsuoka, H Okamoto, M Nakao, H Harima and E Kurimoto, Appl. Phys. Lett. 81, 1246 (2002)ADSCrossRefGoogle Scholar
  6. [6]
    T Inushima, V Mamutin, V Vekshin, S Ivanov, T Sakon, M Motokawa and S Ohoya, J. Crystal Growth 227/228, 481 (2001)CrossRefGoogle Scholar
  7. [7]
    T Tansley and C Foley, J. Appl. Phys. 59, 3241 (1986)ADSCrossRefGoogle Scholar
  8. [8]
    Semiconductors: Data handbook edited by O Madelung (Springer, Berlin, 2004)Google Scholar
  9. [9]
    S K O’Leary, B E Foutz, M S Shur, U V Bhapkar and L F Eastman, J. Appl. Phys. 83, 826 (1998)ADSCrossRefGoogle Scholar
  10. [10]
    E Bellotti, B K Doshi, K F Brennan, J D Albrecht and P P Ruden, J. Appl. Phys. 85, 916 (1999)ADSCrossRefGoogle Scholar
  11. [11]
    B E Foutz, S K O’Leary, M S Shur and L F Eastman, J. Appl. Phys. 85, 7727 (1999)ADSCrossRefGoogle Scholar
  12. [12]
    C Bulutay and B K Ridley, Superlattices Microstruct. 36, 465 (2004)ADSCrossRefGoogle Scholar
  13. [13]
    V M Polyakov, F Schwierz, D Fritsch and H Schmidt, Phys. Status Solidi C3, 598 (2006)ADSGoogle Scholar
  14. [14]
    V M Polyakova and F Schwierz, J. Appl. Phys. Lett. 88, 032101 (2006)CrossRefGoogle Scholar
  15. [15]
    V M Polyakova and F Schwierz, J. Appl. Phys. 99, 113705 (2006)ADSCrossRefGoogle Scholar
  16. [16]
    D Fritsch, H Schmidt and M Grundmann, Phys. Rev. B69, 165204 (2004)ADSGoogle Scholar
  17. [17]
    W Fawcett, A D Boardman and S Swain, J. Phys. Chem. Sol. 31, 1963 (1970)ADSCrossRefGoogle Scholar
  18. [18]
    C Jacoboni and L Reggiani, Rev. Mod. Phys. 55(3), 645 (1983)ADSCrossRefGoogle Scholar
  19. [19]
    The Monte Carlo method for semiconductor device simulation edited by Carlo Jacoboni and Paolo Lugli (Springer-Verlag/Wien, 1989)Google Scholar
  20. [20]
    F M Abou El-Ela, Monte Carlo study of transport in GaAs, Ph.D. Thesis (Essex University, England, 1989)Google Scholar
  21. [21]
    H Brooks and C Herring, Phys. Rev. 83, 879 (1951)Google Scholar
  22. [22]
    E Conwell and V P Weisskopf, Phys. Rev. 77, 388 (1950)ADSzbMATHCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2012

Authors and Affiliations

  1. 1.Department of Physics, Faculty of GirlsAin Shams UniversityCairoEgypt

Personalised recommendations