, Volume 79, Issue 1, pp 137–150 | Cite as

The relationship between the doping levels and some physical properties of SnO2:F thin films spray-deposited on optical glass

  • DEMET TATAREmail author


The relationship between the fluorine doping level and the electrical, structural and optical properties of the SnO2:F films are investigated using the Hall effect measurement set-up in van der Pauw configuration, the XRD patterns, UV–vis spectrophotometry and atomic force microscopy (AFM). The X-ray diffraction patterns taken at room temperature show that the films are polycrystalline. The preferred directions of crystal growth in the diffractogram of SnO2:F (FTO) films correspond to the reflections from the (1 1 0), (2 0 0), (2 1 1) and (3 0 1) planes. Thin film thickness and the grain size vary from 280 to 1545 nm and from 17.45 to 33.22 nm, respectively. AFM study reveals the surface of FTO to be made of nanocrystalline particles. The electrical study reveals that the films are degenerate and exhibit n-type electrical conductivity. The FTO films have a minimum resistivity of 5.29 × 10 − 4 Ω·cm, carrier density of 0.09 × 1020 cm − 3 and mobility of 377.02 cm2/V·s. The sprayed FTO film has the minimum sheet resistance of 5.69 Ω/cm2 and the highest figure-of-merit of 204 × 10 − 4 Ω − 1 at 700 nm. The resistivity attained for the doped film in this study is lower than the values reported for 20 wt.% fluorine-doped tin oxide films prepared from the aqueous solution of SnCl2·2H2O precursor. The highest visible transmittance (700 nm) of the deposited films is 91.8% for 25 wt.% fluorine-doped tin oxide films. The obtained results reveal that the structures and properties of the films are greatly affected by doping levels. These films are useful as conducting layers in electrochromic and photovoltaic devices.


SnO2:F optoelectronic spray pyrolysis thin films 


73 73.20.At 78.15· +e 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D Miao, Q Zhaoa, S Wua, Z Wange, X Zihanga and X Zhaoa, J. Non-Cryst. Solids 356, 2557 (2010)ADSCrossRefGoogle Scholar
  2. [2]
    G J Exarhos and X D Zhou, Thin Solid Films 515, 7025 (2007)ADSCrossRefGoogle Scholar
  3. [3]
    E Elengovan and K Ramamurthi, J. Optoelectron. Adv. Mater. 5/1, 45 (2003)Google Scholar
  4. [4]
    A A Yadav, E U Masumdar, A V Moholkar, M Neumann-Spallart, K Y Rajpure and C H Bhosale, J. Alloys and Compounds 448, 350 (2009)CrossRefGoogle Scholar
  5. [5]
    B Thangaraju, Thin Solid Films 402, 71 (2002)ADSCrossRefGoogle Scholar
  6. [6]
    A Goetzberger and C Hebling, Sol. Energy Mater. Sol. Cells 62, 1 (2000)CrossRefGoogle Scholar
  7. [7]
    G Frank, E Kaur and H Kostlin, Sol. Energy Mater. 8, 387 (1983)ADSCrossRefGoogle Scholar
  8. [8]
    S Chen, Thin Solid Films 77, 127 (1981)ADSCrossRefGoogle Scholar
  9. [9]
    W Y Chung, C H Shim, S D Choi and D D Lee, Sens. Act. B20, 139 (1994)Google Scholar
  10. [10]
    J R Brown, P W Haycock, L M Smith, A C Jones and E W Williams, Sens. Act. B63, 109 (2000)Google Scholar
  11. [11]
    P Nelli, G Faglia, G Sberveglieri, E Cerede, G Gabetta, A Dieguez and J R Morante, Thin Solid Films 371, 249 (2000)ADSCrossRefGoogle Scholar
  12. [12]
    I Stambolova, K Konstantinov and T Tsacheva, Mater. Chem. Phys. 63, 177 (2000)CrossRefGoogle Scholar
  13. [13]
    S U Lee, W S Choi and B Hong, Phys. Scr. T129, 312 (2007)ADSCrossRefGoogle Scholar
  14. [14]
    E Elangovan, S A Shivashankar and K Ramamurthi, J. Crystal Growth 276, 215 (2005)ADSCrossRefGoogle Scholar
  15. [15]
    P S Patil, Mater. Chem. Phys. 59, 185 (1999)MathSciNetCrossRefGoogle Scholar
  16. [16]
    M Ruske, G Brauer and J Szczrbowski, Thin Solid Films 351, 146 (1999)ADSCrossRefGoogle Scholar
  17. [17]
    Q Zhao, S Wu and D Miao, Adv. Mater. Res. 150–151, 1043 (2011)CrossRefGoogle Scholar
  18. [18]
    D Belanger, J P Dotelet, B A Lombos and J I Dickson, J. Electrochem. Soc. 398, 1321 (1985)Google Scholar
  19. [19]
    A C Arias, L S Roman, T Kugler, R Toniola, M S Meruvia and I A Hummelgen, Thin Solid Films 371, 201 (2000)ADSCrossRefGoogle Scholar
  20. [20]
    P S Shewale, S I Patil and M D Uplane, Semicond. Sci. Technol. 25, 115008 (2010)ADSCrossRefGoogle Scholar
  21. [21]
    O K Varghese and L K Malhotra, J. Appl. Phys. 87, 7457 (2000)ADSCrossRefGoogle Scholar
  22. [22]
    M K Karanjai and D D Gupta, J. Phys. D: Appl. Phys. 21, 356 (1988)ADSCrossRefGoogle Scholar
  23. [23]
    G Gordillo, L C Moreno, W de la Cruz and P Theran, Thin Solid Films 252, 61 (1994)ADSCrossRefGoogle Scholar
  24. [24]
    A Malik, A Seco, E Fortunato and R Martin, J. Non-Cryst. Solids 1092, 227 (1998)Google Scholar
  25. [25]
    B Zhang, Y Tian, J C Zhang and W Cai, J. Mater Sci. 46, 1884 (2011)ADSCrossRefGoogle Scholar
  26. [26]
    A V Moholkara, S M Pawara, K Y Rajpureb, S N Almaric, P S Patilb and C H Bhosale, Solar Energy Mater. Solar Cells 92, 1439 (2008)CrossRefGoogle Scholar
  27. [27]
    Q Chen, Y Qian, Z Chen, G Zhou and Y Zhang, Thin Solid Films 264, 25 (1995)ADSCrossRefGoogle Scholar
  28. [28]
    A Smith, J M Laurent, D S Smith, J P Bonnet and R R Clemente, Thin Solid Films 266, 20 (1995)ADSCrossRefGoogle Scholar
  29. [29]
    K Omura, P Veluchamy and M Murozono, J. Elecktrochem. Soc. 146, 2113 (1999)CrossRefGoogle Scholar
  30. [30]
    A V Moholkar, S M Pawara, K Y Rajpure, C H Bhosale and J H Kim, Appl. Surface Sci. 255, 9358 (2009)ADSCrossRefGoogle Scholar
  31. [31]
    N Menarian, S M Rozati, E Elemurugu and E Fortunato, Phys. Status Solidi C79, 2277 (2010)ADSGoogle Scholar
  32. [32]
    E Elengovan and K Ramamurthi, Appl. Surface Sci. 249, 183 (2005)ADSCrossRefGoogle Scholar
  33. [33]
    S J Ikhmayies and R N Ahmad-Bitar, Mater. Sci. Semicond. Process 12(3), 122 (2009)CrossRefGoogle Scholar
  34. [34]
    T M Mohammad, Sol. Energy Mater. 20(4), 297 (1990)CrossRefGoogle Scholar
  35. [35]
    E A Rakhshani, Y Makdisi and A H Ramazaniyan, J. Appl. Phys. 83, 1049 (1998)ADSCrossRefGoogle Scholar
  36. [36]
    A V Moholkar, S M Pawara, K Y Rajpureb and C H Bhosale, Mater. Lett. 61, 3030 (2007)CrossRefGoogle Scholar
  37. [37]
    B Thangaraju, Thin Solid Films 402, 71 (2002)ADSCrossRefGoogle Scholar
  38. [38]
    J Sanchez-Gonzalez, A Diaza-Parralejo, A L Ortiz, and F Guiberteau, Appl. Surface Sci. 252, 6013 (2006)ADSCrossRefGoogle Scholar
  39. [39]
    A V Moholkar, S M Pawar, Y K Rajpure and C H Bhosale, J. Alloys and Compounds 455, 440 (2008)CrossRefGoogle Scholar
  40. [40]
    C M Shen, X G Zhang and H L Li, Appl. Surf. Sci. 240, 34 (2005)ADSCrossRefGoogle Scholar
  41. [41]
    R R Kasar, N G Deshpande, Y G Gudage, J C Vyas and R Sharma, Physica B403, 3724 (2008)ADSGoogle Scholar
  42. [42]
    A Beltron and J Andres, Appl. Phys. Lett. 83, 635 (2003)ADSCrossRefGoogle Scholar
  43. [43]
    M Bedir, M Öztaž, O F Bakkaloglu and R Ormanel, Eur. Phys. J. B45, 465 (2005)ADSGoogle Scholar
  44. [44]
    M Kojima, H Kato and M Gatto, Phil. Mag. B68, 215 (1993)Google Scholar
  45. [45]
    M Dhanam, R Balsundharprabhu, S Jayakumar, P Gopalkrishnan and M D Kannan, Phys. Status Solidi A19, 149 (2002)ADSGoogle Scholar
  46. [46]
    R Bazavan, L Ion, G Socol, I Enculescu, D Bazavan, C Tazlaoanu, A Lõrinczi, I N Mihailescu, M Popescu and S Antohe, J. Optoelectron. Adv. Mater. 11(4), 425 (2009)Google Scholar
  47. [47]
    C Gümüž, O M Ozkendir, H Kavak and Y Ufuktepe, J. Optoelectron. Adv. Mater. 8/1, 299 (2006)Google Scholar
  48. [48]
    K S Ramaiah and V S Raja, Appl. Surf. Sci. 253, 1451 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2012

Authors and Affiliations

  1. 1.K.K. Education Faculty, Department of PhysicsAtaturk UniversityErzurumTurkey

Personalised recommendations