Pramana

, Volume 78, Issue 1, pp 135–145 | Cite as

The width of Liesegang bands: A study using moving boundary model and simulation

Article

Abstract

The pattern formation in reaction–diffusion systems was studied by invoking the provisions contained in the moving boundary model. The model claims that the phase separation mechanism is responsible for separating the colloidal phase of precipitants into band and non-band regions. The relation between the band separation and its width are invariably related to the concentration of the reacting components. It was observed that this model provides critical condition for the band formation in semi-idealized diffusion systems. An algorithm for generating the band structure was designed, and the simulated pattern shows a close resemblance with the experimentally observed ones.

Keywords

Reaction–diffusion systems Liesegang bands pattern formation moving boundary simulation 

PACS Nos

64.75.Xc 64.75.Yz 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E J Crampin, W W Hackborn and P K Maini, Bull. Math. Biol. 64, 747 (2002)CrossRefGoogle Scholar
  2. [2]
    R E Liesegang, Naturwiss. Wochenschr. 11, 353 (1896)Google Scholar
  3. [3]
    I Bena, M Droz, I Lagzi, K Martens, Z Rácz and A Volford, Phys. Rev. Lett. 101, 075701 (2008)ADSCrossRefGoogle Scholar
  4. [4]
    A M Turing, Phil. Trans. R. Soc. B237, 37 (1952)ADSGoogle Scholar
  5. [5]
    M Al-Ghoul and R Sultan, J. Phys. Chem. A105, 8053 (2001)Google Scholar
  6. [6]
    T Antal, I Bena, M Droz, K Martens and Z Rácz, Phys. Rev. E76, 046203 (2007)ADSGoogle Scholar
  7. [7]
    Q Ouyang and H L Swinney, Nature 352, 610 (1991)ADSCrossRefGoogle Scholar
  8. [8]
    K J Lee, W D McCormick, H L Swinney and Z Nosticziusz, J. Chem. Phys. 96, 4048 (1992)ADSCrossRefGoogle Scholar
  9. [9]
    V K Vanag and I R Epstein, Phys. Rev. Lett. 87, 228301 (2001)ADSCrossRefGoogle Scholar
  10. [10]
    J Ross, Adam P Arkin and Stefan C Mueller, J. Phys. Chem. 99, 10417 (1995)CrossRefGoogle Scholar
  11. [11]
    J Horvath, I Szalai and P D Kepper, Physica D239, 776 (2010)ADSGoogle Scholar
  12. [12]
    E S Hedges and R V Hanley, J. Chem. Soc. Article no. CCCLX, 2714 (1928)Google Scholar
  13. [13]
    D N Ghosh, J. Indian Chem. Soc. 1, 509 (1930)Google Scholar
  14. [14]
    M Flicker and J Ross, J. Chem. Phys. 60, 3458 (1974)ADSCrossRefGoogle Scholar
  15. [15]
    H W Morse and G W Pierce, Z. Phys. Chem. 45, 589 (1903)Google Scholar
  16. [16]
    H W Morse and G W Pierce, Proc. Am. Acad. Arts Sci. 38, 625 (1903)CrossRefGoogle Scholar
  17. [17]
    A Einstein, Ann. Phys. 4th Ser. xvII, 549 (1905)ADSCrossRefGoogle Scholar
  18. [18]
    K Jablczynski, Bull. Soc. Chim. Fr. 33, 1592 (1923)Google Scholar
  19. [19]
    T Antal, M Droz, J Magnin, Z Rácz and M Zrinyi, J. Chem. Phys. 109, 9479 (1998)ADSCrossRefGoogle Scholar
  20. [20]
    A Packter, Kolloid Zeitschrift. 142, 109 (1955)CrossRefGoogle Scholar
  21. [21]
    A Packter and R Matalon, J. Colloid Sci. 10, 46 (1955)CrossRefGoogle Scholar
  22. [22]
    K M Pillai, V K Vaidyan and M A Ittyachen, Colloid Polym. Sci. 258, 831 (1980)CrossRefGoogle Scholar
  23. [23]
    B Chopard, P Luthi and M Droz, Phys. Rev. Lett. 72, 1384 (1994)ADSCrossRefGoogle Scholar
  24. [24]
    M Droz, J Magnin and M Zrinyi, J. Chem. Phys. 110, 9618 (1999)ADSCrossRefGoogle Scholar
  25. [25]
    M Droz, J. Stat. Phys. 101, 509 (2000)ADSMATHCrossRefGoogle Scholar
  26. [26]
    W Ostwald, Z. Phys. 23, 365 (1897)Google Scholar
  27. [27]
    C Wagner, J. Colloid Sci. 5, 85 (1950)CrossRefGoogle Scholar
  28. [28]
    S Prager, J. Chem. Phys. 25, 279 (1956)ADSCrossRefGoogle Scholar
  29. [29]
    R Lovett, P Ortoleva and J Ross, J. Chem. Phys. 69, 947 (1978)ADSCrossRefGoogle Scholar
  30. [30]
    R Feeney, S L Schmidt, P Strickholm, J Chadam and P Ortoleva, J. Chem. Phys. 78, 293 (1983)CrossRefGoogle Scholar
  31. [31]
    I M Lifshitz and V V Slyozov, J. Phys. Chem. Solids 19, 35 (1961)ADSCrossRefGoogle Scholar
  32. [32]
    S Shinohara, J. Phys. Soc. Jpn 29, 1073 (1970)ADSCrossRefGoogle Scholar
  33. [33]
    G Venzl and J Ross, J. Chem. Phys. 77, 1308 (1982)ADSCrossRefGoogle Scholar
  34. [34]
    G Venzl, J. Chem. Phys. 85, 1996 (1986)ADSCrossRefGoogle Scholar
  35. [35]
    J George and G Varghese, Chem. Phys. Lett. 362, 8 (2002)ADSCrossRefGoogle Scholar
  36. [36]
    J George and G Varghese, J. Colloid Interface Sci. 282, 397 (2005)CrossRefGoogle Scholar
  37. [37]
    D A B Young, Colloid Polym. Sci. 278, 464 (2000)CrossRefGoogle Scholar
  38. [38]
    D Gunton, M S Miguel and P S Sahni, Phase transition and critical phenomena edited by C Domb and J L Lebowitz (Academic Press, New York, 1983)Google Scholar
  39. [39]
    T Antal, M Droz, J Magnin and Z Rácz, Phys. Rev. Lett. 83, 2880 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 2011

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of CalicutMalappuramIndia
  2. 2.Department of MeteorologyEötvös UniversityBudapestHungary
  3. 3.Department of Chemical and Biological EngineeringNorthwestern UniversityEvanstonUSA

Personalised recommendations