, Volume 77, Issue 5, pp 817–826 | Cite as

Learning and structure of neuronal networks

  • KIRAN M KOLWANKAREmail author


We study the effect of learning dynamics on network topology. Firstly, a network of discrete dynamical systems is considered for this purpose and the coupling strengths are made to evolve according to a temporal learning rule that is based on the paradigm of spike-time-dependent plasticity (STDP). This incorporates necessary competition between different edges. The final network we obtain is robust and has a broad degree distribution. Then we study the dynamics of the structure of a formal neural network. For properly chosen input signals, there exists a steady state with a residual network. We compare the motif profile of such a network with that of the real neural network of C. elegans and identify robust qualitative similarities. In particular, our extensive numerical simulations show that this STDP-driven resulting network is robust under variations of model parameters.


Neuronal networks scale-free network synapses learning logistic map 


87.18.Sn 05.45.Xt 89.75.Hc 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R Albert and A-L Barabasi, Rev. Mod. Phys. 74, 47 (2002)MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. [2]
    D Watts and S H Strogatz, Nature 393, 440 (1998)ADSCrossRefGoogle Scholar
  3. [3]
    S Bornholdt and H G Schuster, Handbook of graphs and networks: From the genome to the internet (Wiley-VCH, Weinheim, 2002)CrossRefGoogle Scholar
  4. [4]
    M E J Newman, SIAM Rev. 45, 167 (2003)MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. [5]
    S N Dorogovtsev and J F F Mendes, Evolution of networks: From biological nets to the internet and WWW (Oxford University Press, USA, 2003)zbMATHGoogle Scholar
  6. [6]
    V M Eguíluz, D R Chialvo, G A Cecchi, M Baliki and A V Apkarian, Phys. Rev. Lett. 94(1), 018102 (2005)ADSCrossRefGoogle Scholar
  7. [7]
    C J Stam and J C Reijneveld, Nonlin. Biomed. Phys. 1, 3 (2007)CrossRefGoogle Scholar
  8. [8]
    R Milo, S Shen-Orr, S ltzkovitz, N Kashtan, D Chklovskii and U Alon, Science 298, 824 (2002)ADSCrossRefGoogle Scholar
  9. [9]
    R Milo, S Itzkovitz, N Kashtan, R Levitt, S Shen-Orr, I Ayzenshtat, M Sheffer and U Alon, Science 303, 1538 (2004)ADSCrossRefGoogle Scholar
  10. [10]
    J Jost and K M Kolwankar, Physica A388, 1959 (2009)ADSGoogle Scholar
  11. [11]
    Q Ren, K M Kolwankar, A Samal and J Jost, Physica A389, 3900 (2010)ADSGoogle Scholar
  12. [12]
    G Shepherd, Neurobiology (Oxford Univ. Press, 1994)Google Scholar
  13. [13]
    D L Bishop, T Misgeld, M K Walsh, W Gan and J W Lichtman, Neuron 44(4), 651 (2004)CrossRefGoogle Scholar
  14. [14]
    W Wadsworth, Curr. Biol. 15, R796 (2005)CrossRefGoogle Scholar
  15. [15]
    J G White, E Southgate, J N Thomson and S Brenner, Phil. Trans. R. Soc. London B314, 1 (1986)ADSGoogle Scholar
  16. [16]
    L R Varshney, B L Chen, E Paniagua, D H Hall and D B Chklovskii, PLoS Comput. Biol. 7, e1001066 (2011)CrossRefGoogle Scholar
  17. [17]
    R K Pan, N Chatterjee and S Sinha, PLoS ONE 5(2), e9240 (2010)ADSCrossRefGoogle Scholar
  18. [18]
    N Chatterjee and S Sinha, Progress in brain research (Elsevier, 2008) Vol. 168, pp. 145–153Google Scholar
  19. [19]
    E L Peckol, J A Zallen, J C Yarrow and C I Bargmann, Development 126, 1891 (1999)Google Scholar
  20. [20]
    H Markram, J Lübke, M Frotscher and B Sakmann, Science 275, 213 (1997)Google Scholar
  21. [21]
    T Wennekers and N Ay, Neural Comput. 17, 2258 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    M-O Gewaltig and M Diesmann, Scholarpedia 2(4), 1430 (2007)CrossRefGoogle Scholar
  23. [23]
    S Song, K D Miller and L F Abbott, Nature Neurosci. 3(9), 919 (2000)CrossRefGoogle Scholar
  24. [24]
    R D Traub and R Miles, Neuronal networks of the hippocampus (Cambridge University Press, Cambridge, UK, 1991)CrossRefGoogle Scholar
  25. [25]
    C-W Shin and S Kim, Phys. Rev. E74, 045101(R) (2006)ADSGoogle Scholar
  26. [26]
    G Bi and M Poo, Annu. Rev. Neurosci. 24, 139 (2001)CrossRefGoogle Scholar
  27. [27]
    C Li, Phys. Rev. E78, 037101 (2008)ADSGoogle Scholar
  28. [28]
    N Masuda and H Kori, J. Comput. Neurosci. 22, 327 (2007)MathSciNetCrossRefGoogle Scholar
  29. [29]
    C Meisel and T Gross, Phys. Rev. E80, 061917 (2009)ADSGoogle Scholar

Copyright information

© Indian Academy of Sciences 2011

Authors and Affiliations

    • 1
    • 2
    Email author
    • 2
    • 3
    • 2
    • 4
    • 2
    • 5
  1. 1.Department of PhysicsRamniranjan Jhunjhunwala CollegeMumbaiIndia
  2. 2.Max Planck Institute for Mathematics in the SciencesLeipzigGermany
  3. 3.School of Electronics Engineering and Computer SciencePeking UniversityBeijingChina
  4. 4.Laboratoire de Physique Théorique et Modèles StatistiquesCNRS and Univ Paris-SudOrsayFrance
  5. 5.Santa Fe InstituteSanta FeUSA

Personalised recommendations