Advertisement

Pramana

, Volume 76, Issue 2, pp 331–337 | Cite as

Spectral distribution of the 2S →1 S two-photon transition in atoms and few-electron ions

  • AJAY KUMAREmail author
  • S TROTSENKO
  • A V VOLOTKA
  • D BANAŚ
  • H F BEYER
  • H BRÄUNING
  • S FRITZSCHE
  • A GUMBERIDZE
  • S HAGMANN
  • S HESS
  • C KOZHUHAROV
  • R REUSCHL
  • U SPILLMANN
  • M TRASSINELLI
  • G WEBER
  • Th STÖHLKER
Article
  • 55 Downloads

Abstract.

The two-photon decay of the 2S state to the ground state in dressed atoms and one- or two-electron ions has been studied for several decades. Relativistic calculations have shown an Z-dependence of the spectral shape of this two-photon transition in one- or two-electron ions. We have measured the spectral distribution of the 1s2s \(^1\!S_0\) → 1s 2 \(^1\!S_0\) two-photon transition in He-like tin at the ESR storage ring using a new approach for such experiments. In this method, relativistic collisions of initially Li-like projectiles with a gaseous target were used to populate exclusively the first excited state, 1s2s, of He-like tin, which provided a clean two-photon spectrum. The measured two-photon spectral distribution was compared with fully relativistic calculations. The obtained results show very good agreement with the calculations for He-like tin.

Keywords.

Two-photon decay; ionization; highly-charged ions. 

PACS Nos

32.30.Rj; 31.30.jc; 32.80.Wr 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M Göppert-Mayer, Naturwissenschaften 17, 932 (1929)CrossRefGoogle Scholar
  2. [2]
    M Göppert-Mayer, Ann. Phys. (Leipzig) 401, 273 (1931)ADSCrossRefGoogle Scholar
  3. [3]
    G Breit and E Teller, Astrophys. J. 91, 215 (1940)ADSCrossRefGoogle Scholar
  4. [4]
    S P Goldman and G W F Drake, Phys. Rev. A24, 183 (1981)ADSGoogle Scholar
  5. [5]
    J Shapiro and G Breit, Phys. Rev. 113, 179 (1959)ADSCrossRefGoogle Scholar
  6. [6]
    S Klarsfeld, Phys. Lett. A30, 382 (1969)ADSGoogle Scholar
  7. [7]
    F A Parpia and W R Johnson, Phys. Rev. A26, 1142 (1982)ADSGoogle Scholar
  8. [8]
    G W F Drake, Phys. Rev. A34, 2871 (1986)ADSGoogle Scholar
  9. [9]
    A Derevianko and W R Johnson, Phys. Rev. A56, 1288 (1997)ADSGoogle Scholar
  10. [10]
    A Volotka (unpublished)Google Scholar
  11. [11]
    L Spitzer and J L Greenstein, Astrophys. J. 114, 407 (1951)ADSCrossRefGoogle Scholar
  12. [12]
    I Freund, Phys. Rev. A7, 1849 (1973)ADSGoogle Scholar
  13. [13]
    Y J- Wu and J M- Li, J. Phys. B21, 1509 (1988)ADSGoogle Scholar
  14. [14]
    Y B Bannett and I Freund, Phys. Rev. A30, 299 (1984)ADSGoogle Scholar
  15. [15]
    X M Tong, J M Li, L Kissel and R H Pratt, Phys. Rev. A42, 1442 (1990)ADSGoogle Scholar
  16. [16]
    X Mu and B Crasemann, Phys. Rev. A38, 4585 (1988)ADSGoogle Scholar
  17. [17]
    Y Bannett and I Freund, Phys. Rev. Lett. 49, 539 (1982)ADSCrossRefGoogle Scholar
  18. [18]
    R W Dunford, E P Kanter, B Krässig, S H Southworth, L Young, P H Mokler and Th Stöhlker, Phys. Rev. A67, 054501 (2003)ADSGoogle Scholar
  19. [19]
    K Ilakovac, J Tudorić-Ghemo, B Bušić, and V Horvat, Phys. Rev. Lett. 56, 2469 (1986)ADSCrossRefGoogle Scholar
  20. [20]
    K Ilakovac, J Tudorić-Ghemo and S Kaučić, Phys. Rev. A44, 7392 (1991)ADSGoogle Scholar
  21. [21]
    K Ilakovac, V Horvat, Z Krečak, G Jerbić-Zorc, N Ilakovac and T Bokulić, Phys. Rev. A46, 132 (1992)ADSGoogle Scholar
  22. [22]
    P H Mokler, H W Schäffer and R W Dunford, Phys. Rev. A70, 032504 (2004)ADSGoogle Scholar
  23. [23]
    P H Mokler and R W Dunford, Phys. Scr. 69, C1 (2004)CrossRefGoogle Scholar
  24. [24]
    K Ilakovac, M Uroić, M Majer, S Pašić and B Vuković, Rad. Phys. Chem. 75, 1451 (2006)ADSCrossRefGoogle Scholar
  25. [25]
    H W Schäffer, R W Dunford, E P Kanter, S Cheng, L J Curtis, A E Livingston and P H Mokler, Phys. Rev. A59, 245 (1999)ADSGoogle Scholar
  26. [26]
    P H Mokler, S Reusch, A Warczak, Z Stachura, T Kambara, A Müller, R Schuch and M Schulz, Phys. Rev. Lett. 65, 3108 (1990)ADSCrossRefGoogle Scholar
  27. [27]
    R Ali et al, Phys. Rev. A55, 994 (1997)ADSGoogle Scholar
  28. [28]
    H W Schäffer et al, Phys. Lett. A260, 489 (1999)ADSGoogle Scholar
  29. [29]
    J Rzadkiewicz et al, Phys. Rev. A74, 012511 (2006)ADSGoogle Scholar
  30. [30]
    J Eichler and Th Stöhlker, Phys. Rep. 429, 1 (2007)ADSCrossRefGoogle Scholar
  31. [31]
    A Kumar et al, Eur. Phys. J. Special Topics 169, 19 (2009)ADSCrossRefGoogle Scholar
  32. [32]
    S Trotsenko et al, Phys. Rev. Lett. 104, 033001 (2010)ADSCrossRefGoogle Scholar
  33. [33]
    A Surzhykov, P Koval and S Fritzsche, Phys. Rev. A71, 022509 (2005)ADSGoogle Scholar
  34. [34]
    A Surzhykov, A Volotka, F Fratini, J P Santos, P Indelicato, G Plunien, Th Stöhlker and S Fritzsche, Phys. Rev. A81, 042510 (2010)ADSGoogle Scholar

Copyright information

© Indian Academy of Sciences 2011

Authors and Affiliations

  • AJAY KUMAR
    • 1
    Email author
  • S TROTSENKO
    • 2
    • 3
    • 4
  • A V VOLOTKA
    • 5
  • D BANAŚ
    • 6
  • H F BEYER
    • 2
  • H BRÄUNING
    • 2
  • S FRITZSCHE
    • 2
  • A GUMBERIDZE
    • 7
  • S HAGMANN
    • 2
    • 4
  • S HESS
    • 2
    • 4
  • C KOZHUHAROV
    • 2
  • R REUSCHL
    • 2
    • 4
  • U SPILLMANN
    • 2
    • 4
  • M TRASSINELLI
    • 8
  • G WEBER
    • 2
  • Th STÖHLKER
    • 2
    • 3
    • 9
  1. 1.Nuclear Physics DivisionBhabha Atomic Research CentreMumbaiIndia
  2. 2.GSI Helmholtzzentrum für SchwerionenforschungDarmstadtGermany
  3. 3.Helmholtz-Institut JenaJenaGermany
  4. 4.Institut für KernphysikUniversität FrankfurtFrankfurtGermany
  5. 5.Institut für Theoretische PhysikTechnische UniversitätDresdenGermany
  6. 6.Institute of PhysicsJan Kochanowski UniversityKielcePoland
  7. 7.ExtreMe Matter Institute (EMMI), GSIDarmstadtGermany
  8. 8.Institut des Nanosciences de Paris, Campus BoucicautParisFrance
  9. 9.Physikalisches InstitutRuprecht-Karls-UniversitätHeidelbergGermany

Personalised recommendations