Advertisement

Pramana

, Volume 75, Issue 4, pp 579–598 | Cite as

Quarkonium and hydrogen spectra with spin-dependent relativistic wave equation

  • V. H. Zaveri
Article

Abstract

The non-linear non-perturbative relativistic atomic theory introduces spin in the dynamics of particle motion. The resulting energy levels of hydrogen atom are exactly the same as that of Dirac theory. The theory accounts for the energy due to spin-orbit interaction and for the additional potential energy due to spin and spin-orbit coupling. Spin angular momentum operator is integrated into the equation of motion. This requires modification to classical Laplacian operator. Consequently, the Dirac matrices and the k operator of Dirac’s theory are dispensed with. The theory points out that the curvature of the orbit draws on certain amount of kinetic and potential energies affecting the momentum of electron and the spin-orbit interaction energy constitutes a part of this energy. The theory is developed for spin-1/2 bound state single electron in Coulomb potential and then extended further to quarkonium physics by introducing the linear confining potential. The unique feature of this quarkonium model is that the radial distance can be exactly determined and does not have a statistical interpretation. The established radial distance is then used to determine the wave function. The observed energy levels are used as the input parameters and the radial distance and the string tension are predicted. This ensures 100% conformance to all observed energy levels for the heavy quarkonium.

Keywords

Relativistic wave equation spin quark model hydrogen model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E Schrödinger, Ann. Phys. (Leipzig) 79, 361, 489 (1926); 81, 109 (1926)Google Scholar
  2. [2]
    B Thaller, The dirac equation (Springer, Berlin, 1992)Google Scholar
  3. [3]
    P A M Dirac, Proc. R. Soc. A117, 610 (1928); 118, 351 (1928); 126, 360 (1930)ADSGoogle Scholar
  4. [4]
    P A M Dirac, The principles of quantum mechanics (Oxford University Press, Hong Kong, 1995)Google Scholar
  5. [5]
  6. [6]
    G Paz, J. Phys. A: Math. Gen. 35, 3727 (2002)zbMATHCrossRefMathSciNetADSGoogle Scholar
  7. [7]
    B Podolsky, Phys. Rev. 32, 812 (1928)CrossRefADSGoogle Scholar
  8. [8]
    B S deWitt, Phys. Rev. 85, 653 (1952)CrossRefMathSciNetADSGoogle Scholar
  9. [9]
    A Messiah, Quantum mechanics (North-Holland, Amsterdam, 1965)Google Scholar
  10. [10]
    J Franklin, Mod. Phys. Lett. A14, 2409 (1999)MathSciNetADSGoogle Scholar
  11. [11]
    E Eichten et al, Phys. Rev. Lett. 34, 369 (1975)CrossRefADSGoogle Scholar
  12. [12]
    E Eichten, K Gottfried, T Kinoshita, K D Lane and T-M Yan, Phys. Rev. D17, 3090 (1978)ADSGoogle Scholar
  13. [13]
    S Godfrey and N Isgur, Phys. Rev. D32, 189 (1985)ADSGoogle Scholar
  14. [14]
    S N Gupta and J M Johnson, Phys. Rev. D53, 312 (1996)ADSGoogle Scholar
  15. [15]
    S Jacobs, M G Olsson and C I Suchyta, Phys. Rev. D33, 3338 (1986)ADSGoogle Scholar
  16. [16]
    J Pumplin, W W Repko and A Sato, Phys. Rev. Lett. 35, 1538 (1975)CrossRefADSGoogle Scholar
  17. [17]
    H J Schnitzer, Phys. Rev. Lett. 35, 1540 (1975)CrossRefADSGoogle Scholar
  18. [18]
    S F Radford and W W Repko, Phys. Rev. D75, 074031 (2007)ADSGoogle Scholar
  19. [19]
    S N Gupta, S F Radford and W W Repko, Phys. Rev. D26, 3305 (1982); 31, 160 (1985); 34, 201 (1986)ADSGoogle Scholar
  20. [20]
    S N Gupta, J M Johnson, W W Repko and C J Suchyta III, Phys. Rev. D49, 1551 (1994)ADSGoogle Scholar
  21. [21]
    D Ebert, R N Faustov and V O Galkin, Phys. Rev. D67, 014027 (2003); Mod. Phys. Lett. A20, 875 (2005)ADSGoogle Scholar
  22. [22]
    E Eichten, K Lane and C Quigg, Phys. Rev. D69, 094019 (2004); 73, 014014 (2006)ADSGoogle Scholar
  23. [23]
    T Barnes and S Godfrey, Phys. Rev. D69, 054008 (2004)ADSGoogle Scholar
  24. [24]
    H Ciftci, R L Hall and N Saad, Phys. Rev. A72, 022101 (2005)MathSciNetADSGoogle Scholar
  25. [25]
    T Barnes, S Godfrey and E S Swanson, Phys. Rev. D72, 054026 (2005)ADSGoogle Scholar
  26. [26]
    O Lakhina and E S Swanson, Phys. Rev. D74, 014012 (2006)ADSGoogle Scholar
  27. [27]
    C B Compean and M Kirchbach, Eur. Phys. J. Lett. A33, 1 (2007)ADSGoogle Scholar
  28. [28]
    M Baldicchi and G M Prosperi, Phys. Rev. D62, 114024 (2000)ADSGoogle Scholar
  29. [29]
    A E Bernardini and C Dobrigikeit, J. Phys. G29, 1439 (2003)ADSGoogle Scholar
  30. [30]
    J Zeng, J W Van Orden and W Roberts, Phys. Rev. D52, 5229 (1995)ADSGoogle Scholar
  31. [31]
    E J Eichten and C Quigg, Phys. Rev. D52, 1726 (1995)ADSGoogle Scholar
  32. [32]
    Y B Ding, X-H Guo, X Q Li and P N Shen, Phys. Rev. D54, 1136 (1996)ADSGoogle Scholar
  33. [33]
    D Ebert, R N Faustov and V O Galkin, Phys. Rev. D62, 034014 (2000)ADSGoogle Scholar
  34. [34]
    L I Schiff, Quantum mechanics (McGraw-Hill, Singapore, 1968)Google Scholar
  35. [35]
    S N Mosley, math-ph/0309055v1Google Scholar
  36. [36]
    R L Liboff, I Nebenzahl and H H Fleischmann, Am. J. Phys. 41, 976 (1973)CrossRefADSGoogle Scholar
  37. [37]
    O Levin and A Peres, J. Phys. A27, L143 (1994)MathSciNetADSGoogle Scholar
  38. [38]
    J Twamley, J. Phys. A31, 4811 (1998)MathSciNetADSGoogle Scholar
  39. [39]
    R Fitzpatrick, Angular momentum in the hydrogen atom, http://farside.ph. utexas.edu/teaching/lectures/node95.html (2006)
  40. [40]
    D M Brink and G R Satchler, Angular momentum (Clarendon Press, Oxford, 1993), 3rd ed., ch. 2Google Scholar
  41. [41]
    L H Thomas, Nature (London) 117, 514 (1926)CrossRefADSGoogle Scholar
  42. [42]
    N Brambilla et al, Heavy quarkonium physics, CERN Yellow Report No. CERN-2005-005, CERN, Geneva, 2005Google Scholar
  43. [43]
    Y Park, K Kim, T Song, S H Lee and C Wong, Phys. Rev. C76, 044907 (2007)ADSGoogle Scholar
  44. [44]
    C Y Wong, Phys. Rev. C72, 034906 (2005)ADSGoogle Scholar
  45. [45]
    R Sommer, Nucl. Phys. B411, 839 (1994)CrossRefADSGoogle Scholar
  46. [46]
    G S Bali, K Schilling and A Wachter, Phys. Rev. D56, 2566 (1997)ADSGoogle Scholar
  47. [47]
    A Yamamoto, H Suganuma and H Iida, Phys. Rev. D78, 014513 (2008)ADSGoogle Scholar

Copyright information

© Indian Academy of Sciences 2010

Authors and Affiliations

  1. 1.Sion, MumbaiIndia

Personalised recommendations