, Volume 74, Issue 6, pp 857–865 | Cite as

Compactons versus solitons



We investigate whether the recently proposed PT-symmetric extensions of generalized Korteweg-de Vries equations admit genuine soliton solutions besides compacton solitary waves. For models which admit stable compactons having a width which is independent of their amplitude and those which possess unstable compacton solutions the Painlevé test fails, such that no soliton solutions can be found. The Painlevé test is passed for models allowing for compacton solutions whose width is determined by their amplitude. Consequently, these models admit soliton solutions in addition to compactons and are integrable.


Compactons PT-symmetry KdV equation Painlevé test 


  1. [1]
    P Rosenau and J M Hyman, Phys. Rev. Lett. 70, 564 (1993)MATHCrossRefADSGoogle Scholar
  2. [2]
    F Cooper, H Shepard and P Sodano, Phys. Rev. E48, 4027 (1993)MathSciNetADSGoogle Scholar
  3. [3]
    A Khare and F Cooper, Phys. Rev. E48, 4843 (1993)ADSGoogle Scholar
  4. [4]
    Y S Kivshar, Phys. Rev. E48, R43 (1993)MathSciNetADSGoogle Scholar
  5. [5]
    P J Olver and Philip Rosenau, Phys. Rev. E53, 1900 (1996)MathSciNetADSGoogle Scholar
  6. [6]
    B Dey, Phys. Rev. E57, 4733 (1998)ADSGoogle Scholar
  7. [7]
    B Dey and A Khare, Phys. Rev. E58, R2741 (1998)MathSciNetADSGoogle Scholar
  8. [8]
    P Dinda and M Remoissenet, Phys. Rev. E60, 6218(4) (1999)ADSGoogle Scholar
  9. [9]
    F Cooper, J M Hyman and A Khare, Phys. Rev. E64, 026608 (2001)ADSGoogle Scholar
  10. [10]
    J Comte, Phys. Rev. E65, 067601(4) (2002)ADSGoogle Scholar
  11. [11]
    P Rosenau, J M Hyman and M Staley, Phys. Rev. Lett. 98, 024101(4) (2007)CrossRefADSGoogle Scholar
  12. [12]
    C Adam, J Sanchez-Guillen and A Wereszczynski, J. Phys. A40, 13625 (2007)MathSciNetADSGoogle Scholar
  13. [13]
    C Bender, F Cooper, A Khare, B Mihaila and A Saxena, Pramana — J. Phys. 73, 375 (2009)CrossRefGoogle Scholar
  14. [14]
    A Fring, J. Phys. A40, 4215 (2007)MathSciNetADSGoogle Scholar
  15. [15]
    C M Bender, D C Brody, J Chen and E Furlan, J. Phys. A40, F153 (2007)MathSciNetADSGoogle Scholar
  16. [16]
    E Wigner, J. Math. Phys. 1, 409 (1960)MATHCrossRefMathSciNetADSGoogle Scholar
  17. [17]
    C M Bender and S Boettcher, Phys. Rev. Lett. 80, 5243 (1998)MATHCrossRefMathSciNetADSGoogle Scholar
  18. [18]
    S Weigert, J. Phys. B5, S416 (2003)MathSciNetGoogle Scholar
  19. [19]
    C M Bender, D C Brody and H F Jones, Am. J. Phys. 71, 1095 (2003)CrossRefMathSciNetADSGoogle Scholar
  20. [20]
    C Figueira de Morisson Faria and A Fring, Laser Phys. 17, 424 (2007)CrossRefADSGoogle Scholar
  21. [21]
    C M Bender, Rept. Prog. Phys. 70, 947 (2007)CrossRefMathSciNetADSGoogle Scholar
  22. [22]
    A Mostafazadeh, arXiv:0810.5643 (2008)Google Scholar
  23. [23]
    J Weiss, M Tabor and G Carnevale, J. Math. Phys. 24, 522 (1983)MATHCrossRefMathSciNetADSGoogle Scholar
  24. [24]
    P E G Assis and A Fring, J. Phys. A42, 105206 (2009)MathSciNetADSGoogle Scholar
  25. [25]
    F Cooper, A Khare and A Saxena, Complexity 11, 30 (2006)CrossRefMathSciNetGoogle Scholar
  26. [26]
    B Grammaticos and A Ramani, Lect. Notes Phys. 638, 31 (2004)ADSGoogle Scholar
  27. [27]
    R Banerjee, Phys. Scr. 57, 598 (1998)CrossRefADSGoogle Scholar

Copyright information

© Indian Academy of Sciences 2010

Authors and Affiliations

  1. 1.Centre for Mathematical ScienceCity University London, Northampton SquareLondonUK

Personalised recommendations