Pramana

, Volume 74, Issue 1, pp 135–141 | Cite as

Characterization of GaN/AlGaN epitaxial layers grown by metalorganic chemical vapour deposition for high electron mobility transistor applications

  • Bhubesh Chander Joshi
  • Manish Mathew
  • B. C. Joshi
  • D. Kumar
  • C. Dhanavantri
Article

Abstract

GaN and AlGaN epitaxial layers are grown by a metalorganic chemical vapour deposition (MOCVD) system. The crystalline quality of these epitaxially grown layers is studied by different characterization techniques. PL measurements indicate band edge emission peak at 363.8 nm and 312 nm for GaN and AlGaN layers respectively. High resolution XRD (HRXRD) peaks show FWHM of 272 and 296 arcsec for the (0 0 0 2) plane of GaN and GaN in GaN/AlGaN respectively. For GaN buffer layer, the Hall mobility is 346 cm2/V-s and carrier concentration is 4.5 × 1016/cm3. AFM studies on GaN buffer layer show a dislocation density of 2 × 108/cm2 by wet etching in hot phosphoric acid. The refractive indices of GaN buffer layer on sapphire at 633 nm are 2.3544 and 2.1515 for TE and TM modes respectively.

Keywords

Gallium nitride aluminium gallium nitride high electron mobility transistors metalorganic chemical vapour deposition photoluminescence high resolution X-ray diffraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Y F Wu, A Saxler, M Moore, R P Smith, S Sheppard, P M Chavarkar, T Wisleder, U K Mishra and P Parikh, Electron Dev. Lett. 25, 117 (2004)CrossRefADSGoogle Scholar
  2. [2]
    Y F Wu, S M Wood, R P Smith, S Sheppard, S T Allen, P Parikh and J Milligan, IEDM 1, 152 (2006)Google Scholar
  3. [3]
    Fujitsu, Compound Semiconductor Online (http://www.compoundsemi.com/news) June 25 (2007)
  4. [4]
    I Akasaki, H Amano, Y Koide, K Hiramatsu and N Sawaki, J. Crystal Growth 98, 209 (1989)CrossRefADSGoogle Scholar
  5. [5]
    C F Lin, G C Chi, M S Feng, J D Guo, J T Tsang and J M Hong, Appl. Phys. Lett. 68, 3758 (1996)CrossRefADSGoogle Scholar
  6. [6]
    Chul Choi Young, Cha Ho-Young, G Spencer Michael and F Eastman Lester, IEEE Trans. Electron Devices 53, 2926 (2006)CrossRefADSGoogle Scholar
  7. [7]
    Y B Pan, Z J Yang, Z T Chen, Y Lu, T J Yu, X D Hu, K Xu and G Y Zhang, J. Crystal Growth 286, 255 (2006)CrossRefADSGoogle Scholar
  8. [8]
    H Lahre Che, P Venne Gue, B Beaumont and P Gibart, J. Crystal Growth 205, 245 (1999)CrossRefGoogle Scholar
  9. [9]
    S Pal and C Jacob, Bull. Mater. Sci. 27, 501 (2004)CrossRefGoogle Scholar
  10. [10]
    G Felbinger Jonathan, M V S Chandra, Sun Yunju, F Eastman Lester, Wasserbauer John, Faili Firooz, Babic Dubravko, Francis Daniel and Ejeckam Felix, Electron Dev. Lett. 28, 948 (2007)CrossRefGoogle Scholar
  11. [11]
    Manish Mathew, B C Joshi, Bhubesh Chander Joshi, C Dhanavantri and B R Singh, Proceedings of DAE Solid State Physics Symposium (Mysore, 2007) Vol. 52, p. 549Google Scholar
  12. [12]
    B P Keller, S Keller, D Kapolnek, W N Jiang, Y F Wu, H Masui, X Wu, B Heying, J S Speck, U K Mishra and S P Denbaars, J. Electron. Mater. 24, 1707 (1995)CrossRefADSGoogle Scholar
  13. [13]
    T Kozawa, T Kachi, T Ohwahi, Y Taga, N Koide and M Koide, J. Electrochem. Soc. 143, L–17 (1996)CrossRefGoogle Scholar
  14. [14]
    A S Barker and M Ilegems, Phys. Rev. B7, 743 (1973)ADSGoogle Scholar

Copyright information

© Indian Academy of Sciences 2010

Authors and Affiliations

  • Bhubesh Chander Joshi
    • 1
  • Manish Mathew
    • 1
  • B. C. Joshi
    • 1
  • D. Kumar
    • 2
  • C. Dhanavantri
    • 1
  1. 1.Optoelectronic Devices Group, Central Electronics Engineering Research InstituteCEERI (Council of Scientific and Industrial Research, CSIR)PilaniIndia
  2. 2.Electronic Science DepartmentKurukshetra UniversityKurukshetraIndia

Personalised recommendations