Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Synchronization and suppression of chaos in non-locally coupled map lattices

  • 63 Accesses

  • 2 Citations

Abstract

We considered coupled map lattices with long-range interactions to study the spatiotemporal behaviour of spatially extended dynamical systems. Coupled map lattices have been intensively investigated as models to understand many spatiotemporal phenomena observed in extended system, and consequently spatiotemporal chaos. We used the complex order parameter to quantify chaos synchronization for a one-dimensional chain of coupled logistic maps with a coupling strength which varies with the lattice in a power-law fashion. Depending on the range of the interactions, complete chaos synchronization and chaos suppression may be attained. Furthermore, we also calculated the Lyapunov dimension and the transversal distance to the synchronization manifold.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    J P Crutchfield and K Kaneko, in: Directions in chaos edited by Hao Bain-Lin (World Scientific, Singapore, 1987) Vol. 1, p. 272

  2. [2]

    A Pikovsky, M Rosemblum and J Kurths, Synchronization: A universal concept in nonlinear sciences (Cambridge University Press, Cambridge, England, 2001)

  3. [3]

    T Shibata and K Kaneko, Physica D181, 197 (2003)

  4. [3a]

    P G Lind, J Corte-Real and J A C Gallas, Phys. Rev. E69, 066206 (2004)

  5. [4]

    S E de S Pinto, I L Caldas, A M Batista, S R Lopes and R L Viana, Phys. Rev. E76, 017202:1–4 (2007)

  6. [5]

    R L Viana, C Grebogi, S E de S Pinto, S R Lopes, A M Batista and J Kurths, Physica D206, 94 (2005)

  7. [6]

    Z Jabeen and N Gupte, Phys. Rev. E74, 016210 (2006)

  8. [7]

    Z Jabeen and N Gupte, Pramana — J. Phys. 70(6), 1055 (2008)

  9. [8]

    A Lemmaitre and H Chaté, Phys. Rev. Lett. 82, 1140 (1999)

  10. [9]

    S Sinha, D Biswas, M Azam and S V Lawande, Phys. Rev. A46(10), 6242 (1992)

  11. [10]

    J C A de Pontes, R L Viana, S R Lopes, C A S Batista and A M Batista, Physica A387, 4417 (2008)

  12. [11]

    S A Cannas and F A Tamarit, Phys. Rev. B54, R12661 (1996)

  13. [12]

    J C A de Pontes, A M Batista, R L Viana and S R Lopes, Physica A368, 387 (2006)

  14. [13]

    R L Viana, C Grebogi, S E de S Pinto, S R Lopes, A M Batista and J Kurths, Phys. Rev. E68, 067204 (2003)

  15. [14]

    P M Gade and S Sinha, Int. J. Bifurcat. Chaos 16(9), 2767 (2006)

  16. [15]

    A M Batista, S E de S Pinto, R L Viana and S R Lopes, Physica A322, 118 (2003)

  17. [16]

    C A S Batista, A M Batista, J A C de Pontes, R L Viana and S R Lopes, Phys. Rev. E76, 016218:1–10 (2007)

  18. [17]

    S Sinha, Phys. Rev. E66, 016209 (2002)

  19. [18]

    L M Pecora and T L Carroll, Phys. Rev. Lett. 64, 821 (1990)

  20. [19]

    M P K Jampa, A R Sonawane, P M Gade and S Sinha, Phys. Rev. E75, 026215 (2007)

  21. [20]

    S Rajesh, S Sinha and S Sinha, Phys. Rev. E75, 011906 (2007)

  22. [21]

    S Bocalletti, J Kurths, G Osipov, D L Valladares and C S Zhou, Phys. Rep. 366, 1 (2002)

  23. [22]

    A Mondal, S Sinha and J Kurths, Phys. Rev. E78, 066209 (2008)

  24. [23]

    A M Batista and R L Viana, Phys. Lett. A286, 134 (2001)

  25. [24]

    H Shibata, Physica A292, 182 (2001)

  26. [25]

    C J Tessone, M Cecini and A Torcini, Phys. Rev. Lett. 97, 224101 (2006)

  27. [26]

    C Anteneodo, S E de S Pinto, A M Batista and R L Viana, Phys. Rev. E68, 045202(R) (2003)

  28. [26a]

    C Anteneodo, A M Batista and R L Viana Phys. Lett. A326(3–4), 227 (2004)

  29. [27]

    S E de S Pinto and R L Viana, Phys. Rev. E61, 5154 (2000)

  30. [28]

    E Ott, Chaos in dynamical systems 2nd ed. (Cambridge University Press, Cambridge, UK, 2002)

  31. [28a]

    J-P Eckmann and D Ruelle, Rev. Mod. Phys. 57, 617 (1985)

  32. [29]

    S Wiggins, Introduction to applied nonlinear dynamical systems and chaos (Springer-Verlag, New York, 1990)

  33. [30]

    Y B Pesin, Russ. Math. Surv. 32, 55 (1977)

  34. [31]

    D Ruelle, Chaotic evolution and strange attractors (Cambridge University Press, Cambridge, 1989)

Download references

Author information

Correspondence to A. M. Batista.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Szmoski, R.M., Pinto, S.E.D.S., Van Kan, M.T. et al. Synchronization and suppression of chaos in non-locally coupled map lattices. Pramana - J Phys 73, 999 (2009). https://doi.org/10.1007/s12043-009-0175-8

Download citation

Keywords

  • Lattice
  • synchronization
  • maps
  • suppression