, 73:299 | Cite as

Sturm-Schrödinger equations: Formula for metric

  • Miloslav Znojil
  • Hendrik B. Geyer


Sturm-Schrödinger equations = EWψ with HH and W≠ = W ≠ = I are considered, with a weak point of the theory lying in the purely numerical matrix-inversion form of the double-series definition of the necessary metric operator Θ in the physical Hilbert space of states [M Znojil, J. Phys. A: Math. Theor. 41, 215304 (2008]. This shortcoming is removed here via an amended, single-series definition of Θ.


Crypto-Hermiticity Sturm-Schrödinger bound-state problem 


03.65.Bz 03.65.Ca 


  1. [1]
    L Liouville, J. Math. Pure Appl. 1, 16 (1837)Google Scholar
  2. [1a]
    M Znojil, J. Phys. A: Math. Gen. 27, 4945 (1994)zbMATHCrossRefMathSciNetADSGoogle Scholar
  3. [2]
    M Znojil, J. Phys. A: Math. Theor. 41, 215304 (2008)CrossRefMathSciNetADSGoogle Scholar
  4. [3]
    G J C Wessels, A numerical and analytical investigation into non-Hermitian Hamiltonians, Master-degree thesis supervised by H B Geyer and J A C Weideman (University of Stellenbosch, 2008)Google Scholar
  5. [4]
    F G Scholtz, H B Geyer and F J W Hahne, Ann. Phys. (N.Y.) 213, 74 (1992)zbMATHCrossRefMathSciNetADSGoogle Scholar
  6. [5]
    M Znojil, SIGMA 4, 001 (2008), arXiv overlay: 0710.4432v3 [math-ph]MathSciNetGoogle Scholar
  7. [6]
    A Messiah, Quantum mechanics I (North Holland, Amsterdam, 1961)Google Scholar
  8. [7]
    M Znojil, Phys. Lett. A372, 584, 3591 (2008)MathSciNetADSGoogle Scholar
  9. [7a]
    M Znojil, J. Phys. Conf. Ser. 128, 012046 (2008)CrossRefADSGoogle Scholar
  10. [8]
    A Mostafazadeh and A Batal, J. Phys. A: Math. Gen. 37, 11645 (2004)zbMATHCrossRefMathSciNetADSGoogle Scholar
  11. [8a]
    A Mostafazadeh, J. Phys. A: Math. Gen. 38, 6557 (2005)zbMATHCrossRefMathSciNetADSGoogle Scholar
  12. [9]
    M Rotenberg, Adv. At. Mol. Phys. 6, 233 (1970)CrossRefGoogle Scholar
  13. [10]
    M Znojil, J. Math. Phys. 38, 5087 (1997)zbMATHCrossRefMathSciNetADSGoogle Scholar
  14. [11]
    A Voros, J. Phys. A: Math. Gen. 33, 7423 (2000)zbMATHCrossRefMathSciNetADSGoogle Scholar
  15. [12]
    R Szmytkowski and B Zywicka-Mozejko, Phys. Rev. A62, 022104 (2000)MathSciNetADSGoogle Scholar
  16. [13]
    C M Bender and Q Wang, J. Phys. A: Math. Gen. 34, 9835 (2001)zbMATHCrossRefMathSciNetADSGoogle Scholar
  17. [14]
    E Kelbert, A Hyder, F Demir, Z T Hlousek and Z Papp, J. Phys. A: Math. Theor. 40, 7721 (2007)zbMATHCrossRefMathSciNetADSGoogle Scholar

Copyright information

© Indian Academy of Sciences 2009

Authors and Affiliations

  1. 1.Nuclear Physics Institute ASCRŘežCzech Republic
  2. 2.Institute of Theoretical PhysicsUniversity of Stellenbosch and Stellenbosch Institute for Advanced StudyStellenboschSouth Africa

Personalised recommendations