Pramana

, Volume 73, Issue 1, pp 61–112

Five-fold way to new high Tc superconductors

Article

Abstract

Discovery of high Tc superconductivity in La2−xBaxCuO4 by Bednorz and Muller in 1986 was a breakthrough in the 75-year long search for new superconductors. Since then new high Tc superconductors, not involving copper, have also been discovered. Superconductivity in cuprates also inspired resonating valence bond (RVB) mechanism of superconductivity. In turn, RVB theory provided a new hope for finding new superconductors through a novel electronic mechanism. This article first reviews an electron correlation-based RVB mechanism and our own application of these ideas to some new noncuprate superconducting families. In the process we abstract, using available phenomenology and RVB theory, that there are five directions to search for new high Tc superconductors. We call them five-fold way. As the paths are reasonably exclusive and well-defined, they provide more guided opportunities, than before, for discovering new superconductors. The five-fold ways are (i) copper route, (ii) pressure route, (iii) diamond route, (iv) graphene route and (v) double RVB route. Copper route is the doped spin-½ Mott insulator route. In this route one synthesizes new spin-½ Mott insulators and dopes them chemically. In pressure route, doping is not external, but internal, a (chemical or external) pressure-induced self-doping suggested by organic ET-salts. In the diamond route we are inspired by superconductivity in boron-doped diamond and our theory. Here one creates impurity band Mott insulators in a band insulator template that enables superconductivity. Graphene route follows from our recent suggestion of superconductivity in doped graphene, a two-dimensional broadband metal with moderate electron correlations, compared to cuprates. Double RVB route follows from our recent theory of doped spin-1 Mott insulator for superconductivity in iron pnictide family.

Keywords

High Tc superconductivity resonating valence bond theory cuprates organics boron-doped diamond graphene Fe pnictide superconductors 

PACS Nos

74.72.-h 74.20.-z 74.10.+v 74.62.-c 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A Bednorz and A Muller, Z. Phys. B64, 189 (1986)CrossRefADSGoogle Scholar
  2. [2]
    M Cohen and P W Anderson, in: Superconductivity in d- and f-band metals edited by D H Douglass (AIP, New York, 1972) p. 17Google Scholar
  3. [3]
    P W Anderson, Science 235, 1196 (1987)CrossRefADSGoogle Scholar
  4. [4]
    K H Hock, H Nickisch and H Thomas, Helv. Phys. Acta 56, 237 (1983)Google Scholar
  5. [5]
    G Baskaran, Phys. Rev. Lett. 90, 197007 (2003)Google Scholar
  6. [5a]
    F C Zhang, Phys. Rev. Lett. 90, 207002 (2003)Google Scholar
  7. [5b]
    G Baskaran and E Tosatti, Curr. Sci. 61, 33 (1991)Google Scholar
  8. [5c]
    G Baskaran, J. Phys. Chem. Solids 56, 1957 (1995); Physica B223-224, 490 (1996); Phys. Rev. Lett. 91, 097003 (2003)CrossRefADSGoogle Scholar
  9. [6]
    G Baskaran, J. Supcond. Nov. Magnetism 21, 45 (2008); Sci. Technol. Adv. Mater. 7, S49 (2006); Sci. Technol. Adv. Mater. 9, 044104 (2008)CrossRefGoogle Scholar
  10. [7]
    S Pathak, V Shenoy and G, Baskaran, arXiv:0809.0244Google Scholar
  11. [8]
    G Baskaran, J. Phys. Soc. Jpn. 77, 113713 (2008)Google Scholar
  12. [9]
    D Jerome, Science 252, 1509 (1991)CrossRefADSGoogle Scholar
  13. [9a]
    C Bourbonnais and D Jerome, in: Advances in synthetic metals edited by B Bernier et al (Elsevier, 1999) p. 206Google Scholar
  14. [9b]
    T Vuletic et al, E. Phys. J. B25, 319 (2002)ADSGoogle Scholar
  15. [10]
    T Ishiguro et al, Organic superconductor (Springer, Berlin, 1998)Google Scholar
  16. [11]
    E A Ekimov et al, Nature (London) 428, 542 (2004)CrossRefADSGoogle Scholar
  17. [12]
    E Bustarret et al, Phys. Rev. Lett. 93, 237005 (2004)Google Scholar
  18. [13]
    Y Takano et al, Appl. Phys. Lett. 85, 2852 (2004)ADSGoogle Scholar
  19. [14]
    Y Kamihara, J. Am. Chem. Soc. 128, 10012 (2006)Google Scholar
  20. [15]
    Y Kamihara et al, J. Am. Chem. Soc. 130, 3296 (2008)CrossRefGoogle Scholar
  21. [16]
    W A Little, Phys. Rev. 134, A1416 (1964)CrossRefADSGoogle Scholar
  22. [17]
    V L Ginzburg, Sov. Phys. Usp. 13, 335 (1970)CrossRefADSMathSciNetGoogle Scholar
  23. [18]
    L Pauling, Nature of the chemical bond (Cornell University Press, NY, 1960)Google Scholar
  24. [19]
    P W Anderson, Mater. Res. Bull. 30, 1108 (1971)Google Scholar
  25. [20]
    E H Lieb and F Y Wu, Phys. Rev. Lett. 20, 1445 (1968)CrossRefADSGoogle Scholar
  26. [21]
    S A Kivelson, D Rokhsar and J Sethna, Phys. Rev. B38, 8865 (1987)ADSGoogle Scholar
  27. [22]
    S Liang, B Doucot and P W Anderson, Phys. Rev. Lett. 61, 365 (1988)CrossRefADSGoogle Scholar
  28. [22a]
    T Hsu, Phys. Rev. B41, 11379 (1990)ADSGoogle Scholar
  29. [23]
    G Baskaran, Z Zou and P W Anderson, Solid State Commun. 63, 973 (1987)CrossRefADSGoogle Scholar
  30. [24]
    A Kitaev, Ann. Phys. 303, 2 (2003)MATHCrossRefADSMathSciNetGoogle Scholar
  31. [25]
    G Baskaran and R Shankar (in preparation)Google Scholar
  32. [26]
    G Baskaran, Phys. Rev. B64, 092508 (2001)Google Scholar
  33. [27]
    G Baskaran and P W Anderson, Phys. Rev. B37, 580 (1988)ADSGoogle Scholar
  34. [28]
    I Affleck et al, Phys. Rev. B38, 745 (1988)ADSGoogle Scholar
  35. [29]
    I Affleck and J B Marston, Phys. Rev. B37, 3774 (1988)ADSGoogle Scholar
  36. [30]
    G Kotliar, Phys. Rev. B37, 3664 (1988)Google Scholar
  37. [31]
    C Gros, R Joynt and T M Rice, Z. Phys. B68, 425 (1987)CrossRefADSGoogle Scholar
  38. [32]
    F C Zhang and T M Rice, Phys. Rev. B37, 3759 (1988)ADSGoogle Scholar
  39. [33]
    P W Anderson, G Baskaran, Z Zou and T Hsu, Phys. Rev. Lett. 58, 2790 (1987)CrossRefADSGoogle Scholar
  40. [34]
    G Baskaran, Mod. Phys. Lett. B14, 377 (2000)ADSGoogle Scholar
  41. [35]
    G Baskaran, Phys. Rev. Lett. 91, 097003 (2003)Google Scholar
  42. [36]
    P W Anderson and G Baskaran (unpublished 1987)Google Scholar
  43. [37]
    A Ramirez, Superconductivity Rev. 1, 1 (1994)Google Scholar
  44. [38]
    O Zhou et al, Phys. Rev. B52, 483 (1995)ADSGoogle Scholar
  45. [39]
    H Schulz et al, J. Physique-Lett. 279, L–51 (1981)Google Scholar
  46. [39a]
    L N Bulaevski, Adv. Phys. 37, 443 (1988)CrossRefADSGoogle Scholar
  47. [39b]
    T Gimamarchi, Physica B230-232, 975 (1997)ADSGoogle Scholar
  48. [40]
    H Kino and H Fukuyama, J. Phys. Soc. Jpn 64, 2726 (1995)CrossRefADSGoogle Scholar
  49. [41]
    M M Abd-Elmeguid et al, Phys. Rev. Lett. 93, 126403 (2004)Google Scholar
  50. [42]
    M Capone et al, Science 296, 2364 (2002)CrossRefADSGoogle Scholar
  51. [43]
    N F Mott, Phil. Mag. 6, 287 (1961)CrossRefADSGoogle Scholar
  52. [44]
    V Vescoli et al, Science 281, 1181 (1998)CrossRefADSGoogle Scholar
  53. [44a]
    L Degiorgi (private communication)Google Scholar
  54. [45]
    B N Brockhouse, Phys. Rev. 54, 781 (1954)Google Scholar
  55. [45b]
    X G Zheng et al, Phys. Rev. Lett. 85, 5170 (2000)CrossRefADSGoogle Scholar
  56. [46]
    I Loa et al, Phys. Rev. Lett. 87, 125501 (2001)Google Scholar
  57. [47]
    J P Locquet, Nature (London) 394, 453 (1998)CrossRefADSGoogle Scholar
  58. [48]
    The author thank ‘http://www.sxc.hu/home’ for making the blue diamond picture available for our use
  59. [49]
    M Milovanovic, S Sachdev and R N Bhatt, Phys. Rev. Lett. 63, 82 (1989); 48, 597 (1982)CrossRefADSGoogle Scholar
  60. [49a]
    M A Paalanen et al, Phys. Rev. Lett. 61, 597 (1988)CrossRefADSGoogle Scholar
  61. [49b]
    M Lakner et al, Phys. Rev. 50, 17064 (1994)Google Scholar
  62. [50]
    R N Bhatt and T M Rice, Phys. Rev. B23, 1920 (1981)ADSGoogle Scholar
  63. [50a]
    R N Bhatt and P A Lee, Phys. Rev. Lett. 48, 344 (1982)CrossRefADSGoogle Scholar
  64. [51]
    P W Anderson et al, J. Phys.: Condense Matter 24, R755 (2004)CrossRefGoogle Scholar
  65. [52]
    G Baskaran, Iran. J. Phys. Res. 6, 163 (2006)Google Scholar
  66. [53]
    B Sacepe et al, Phys. Rev. Lett. 96, 097006 (2006)Google Scholar
  67. [54]
    A Therese Pushpam and T Navaneethakrishnan, Solid State Commun. 144, 153 (2007)CrossRefADSGoogle Scholar
  68. [55]
    Erik Nielsen and R N Bhatt, arXiv:0705.2038Google Scholar
  69. [56]
    Superconducting ‘dome’ was theoretically predicted first in the paper, PW Anderson et al, Phys. Rev. Lett. 58, 2790 (1987)CrossRefADSGoogle Scholar
  70. [57]
    E Bustarret et al, Nature (London) 444, 465 (2006)CrossRefADSGoogle Scholar
  71. [58]
    Z A Ren et al, J. Phys. Soc. Jpn 76, 103710 (2007)Google Scholar
  72. [59]
    T Shirakawa, S Horiuchi and H Fukuyama, J. Phys. Soc. Jpn 76, 014711 (2007)Google Scholar
  73. [60]
    E A Ekimov et al, Sci. Technol. Adv. Mater. 9, 044210 (2008)Google Scholar
  74. [60a]
    N Dubrovinskaia et al, Appl. Phys. Lett. 92, 132506 (2008)Google Scholar
  75. [61]
    D S Fisher et al, Phys. Rev. Lett. 61, 482 (1988)CrossRefADSGoogle Scholar
  76. [62]
    G Baskaran, unpublishedGoogle Scholar
  77. [63]
    M Alaeia, S Akbar Jafari and H Akbarzadeha, arXiv:0807.4882 (to appear in J. Phys. Chem. Solids)Google Scholar
  78. [64]
    T Venkatesan, National University of Singapore, Project on ’superhydrogenic State Superconductivity’Google Scholar
  79. [65]
    J Nagamatsu et al, Nature (London) 410, 63 (2001)CrossRefADSGoogle Scholar
  80. [66]
    A K Geim and K S Novoselov, Nat. Mater. 6, 183 (2007)CrossRefADSGoogle Scholar
  81. [67]
    M I Katsnelson, Mater. Today 10, 20 (2007)CrossRefGoogle Scholar
  82. [68]
    A H Castro Neto et al, arXiv.org:0709.1163 (2008)Google Scholar
  83. [69]
    G Baskaran, Phys. Rev. B65, 212505 (2002)Google Scholar
  84. [70]
    A M Black-Schaffer and S Doniach, Phys. Rev. B75, 134512 (2007)Google Scholar
  85. [71]
    B Uchoa and A H Castro Neto, Phys. Rev. Lett. 98, 146801 (2007)Google Scholar
  86. [72]
    T C Choy and B A McKinnon, Phys. Rev. B52, 14539 (1995)Google Scholar
  87. [73]
    N Furukawa, J. Phys. Soc. Jpn 70, 1483 (2001)CrossRefADSGoogle Scholar
  88. [74]
    S Onari et al, Phys. Rev. 68, 024525 (2003)Google Scholar
  89. [75]
    D Baeriswyl and E Jackelman, in: The Hubbard model: Its physics and mathematical physics edited by D Baeriswyl (Plenum, New York, 1995) p. 393Google Scholar
  90. [76]
    G Baskaran and S A Jafari, Phys. Rev. Lett. 89, 016402 (2002)Google Scholar
  91. [77]
    D Ceperley, G Chester and M Kalos, Phys. Rev. 65, 1032 (1977)Google Scholar
  92. [78]
    M C Gutzwiller, Phys. Rev. 137, A1726 (1965)CrossRefADSMathSciNetGoogle Scholar
  93. [79]
    H Shiba, in: Two-dimensional strongly correlated electron systems edited by Zi-zhao Gan and Zhao-bin Su (Gordon and Breach Science Publishers, 1989)Google Scholar
  94. [80]
    A Paramekanti, M Randeria and N Trivedi, Phys. Rev. 70, 054504 (2004)Google Scholar
  95. [81]
    S Florens and A Georges, Phys. Rev. 70, 035114 (2004)Google Scholar
  96. [82]
    E Zhou and A Paramekanti, Phys. Rev. 76, 195101 (2007)Google Scholar
  97. [83]
    C Honerkamp, Phys. Rev. Lett. 100, 146404 (2008)Google Scholar
  98. [84]
    T M Klapwijk, Nat. Phys. 1, 17 (2005)CrossRefGoogle Scholar
  99. [85]
    T E Weller et al, Nat. Phys. 1, 39 (2005)CrossRefGoogle Scholar
  100. [86]
    R R da-Silva, J H S Torres and Y Kopelevich, Phys. Rev. Lett. 87, 147001 (2001)Google Scholar
  101. [87]
    Y Kopelevich and P Esquinazi, J. Low Temp. Phys. 146, 5 (2007)CrossRefGoogle Scholar
  102. [88]
    S Lebedev, arXiv:0802.4197 (2008)Google Scholar
  103. [89]
    Y Jiang et al, Phys. Rev. B77, 235420 (2008)Google Scholar
  104. [90]
    Hai-Hu Wen et al, cond-mat/0803.3021Google Scholar
  105. [91]
    Z A Ren et al, cond-mat/0803.4234Google Scholar
  106. [91a]
    G F Chen et al, cond-mat/0803.4384Google Scholar
  107. [92]
    Z A Ren et al, cond-mat/0803.4283Google Scholar
  108. [93]
    F D M Haldane, Phys. Rev. Lett. 50, 1153 (1983)CrossRefADSMathSciNetGoogle Scholar
  109. [94]
    I Affleck et al, Phys. Rev. Lett. 59, 799 (1987)CrossRefADSGoogle Scholar
  110. [94a]
    M den Nijs and K Rommelse, Phys. Rev. 40, 4709 (1989)CrossRefGoogle Scholar
  111. [94b]
    S M Girvin and D P Arovas, Phys. Scr. T27, 156 (1989)CrossRefADSGoogle Scholar
  112. [95]
    S Lebegue, Phys. Rev. B75, 035110 (2007)Google Scholar
  113. [96]
    D J Singh and M-H Du, cond-mat/0803.0429Google Scholar
  114. [96a]
    K Haule et al, cond-mat/0803.1279Google Scholar
  115. [96b]
    G Xu et al, cond-mat/0803.1282Google Scholar
  116. [96c]
    Chao Cao et al, cond-mat/0803.3236Google Scholar
  117. [96d]
    Hai-Jun Zhang et al, cond-mat/0803.4487Google Scholar
  118. [96e]
    L Boeri et al, cond-mat/0803.2703Google Scholar
  119. [96f]
    Gang Xu et al, cond-mat/0803.1282Google Scholar
  120. [97]
    K Kuroki, cond-mat/0803.3325Google Scholar
  121. [97a]
    Xi Dai et al, cond-mat/0803.3982Google Scholar
  122. [97b]
    I I Mazin et al, cond-mat/0803.2740Google Scholar
  123. [97c]
    F Marsiglio and J E Hirsch, cond-mat/0804.0002Google Scholar
  124. [97d]
    Tao Li, cond-mat/0804.0536Google Scholar
  125. [97e]
    G Giovannetti et al, cond-mat/0804.0866Google Scholar
  126. [97f]
    S Raghu et al, cond-mat/0804.1113Google Scholar
  127. [98]
    J C Inkson and P W Anderson, Phys. Rev. B8, 4429 (1973)ADSGoogle Scholar
  128. [98a]
    D Allender, J Bray and J Bardeen, Phys. Rev. B8, 4433 (1973)ADSGoogle Scholar
  129. [98b]
    D Allender, J Bray and J Bardeen, Phys. Rev. B7, 1020 (1973)ADSGoogle Scholar
  130. [99]
    P W Anderson, Phys. Rev. Lett. 34, 953 (1975)CrossRefADSGoogle Scholar
  131. [100]
    B K Chakraverty and C Schlenker, J. Phys. (Paris) Colloq. 37, C4–353 (1976)CrossRefGoogle Scholar
  132. [100a]
    A Alexandrov and J Ranninger, Phys. Rev. B23, 1796 (1981)ADSGoogle Scholar
  133. [101]
    N W Ashcroft, Phys. Rev. Lett. 92, 187002 (2004)Google Scholar
  134. [102]
    G Baskaran, Phys. Canada 56, 236 (2000)Google Scholar
  135. [103]
    S Kivelson, Physica B318, 61 (2002)ADSGoogle Scholar

Copyright information

© Indian Academy of Sciences 2009

Authors and Affiliations

  1. 1.The Institute of Mathematical SciencesC.I.T. Campus, TaramaniChennaiIndia

Personalised recommendations