, Volume 72, Issue 2, pp 429–443 | Cite as

Locally-rotationally-symmetric Bianchi type-V cosmology in general relativity

  • C. P. Singh


A spatially homogeneous locally-rotationally-symmetric (LRS) Bianchi type-V cosmological model is considered with a perfect fluid in general relativity. We present two types of cosmologies (power-law and exponential forms) by using a law of variation for the mean Hubble parameter that yields a constant value for the deceleration parameter. We discuss the physical properties of the non-flat and flat models in each cosmology. Exact solutions that correspond to singular and non-singular models are presented. In a generic situation, models can be interpolated between different phases of the Universe. We find that a constant value for the deceleration parameter is reasonable for a description of different phases of the Universe. We arrive at the conclusion that the Universe decelerates when the value of the deceleration parameter is positive whereas it accelerates when the value is negative. The dynamical behaviours of the solutions and kinematical parameters like expansion, shear and the anisotropy parameter are discussed in detail in each section. Exact expressions for look-back time, luminosity distance and event horizon vs. redshift are derived and their significances are discussed in some detail. It has been observed that the solutions are compatible with the results of recent observations.


Bianchi type models Hubble parameter deceleration parameter inflationary model 


98.80.Cq 04.20.Jb 04.20.-q 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J E Lidsey, Class. Quant. Grav. 9, 1239 (1992)zbMATHCrossRefADSMathSciNetGoogle Scholar
  2. [2]
    S Roy and A Prasad, Gen. Relativ. Gravit. 26, 939 (1994)CrossRefADSMathSciNetGoogle Scholar
  3. [3]
    D L Farnsworth, J. Math. Phys. 8, 2315 (1967)zbMATHCrossRefADSGoogle Scholar
  4. [4]
    R Maartens and S D Nel, Commun. Math. Phys. 59, 273 (1978)zbMATHCrossRefADSMathSciNetGoogle Scholar
  5. [5]
    J Wainwright, W C W Ince and Marshman, Gen. Relativ. Gravit. 10, 259 (1997)CrossRefADSMathSciNetGoogle Scholar
  6. [6]
    C B Collins, Commun. Math. Phys. 39, 131 (1974)zbMATHCrossRefGoogle Scholar
  7. [7]
    A A Coley and K A Dunn, J. Math. Phys. 33, 1772 (1992)zbMATHCrossRefADSMathSciNetGoogle Scholar
  8. [8]
    A A Coley and R J Hoogen, J. Math. Phys. 35, 4117 (1994)zbMATHCrossRefADSMathSciNetGoogle Scholar
  9. [9]
    B L Meena and R Bali, Astrophys. Space Sci. 281, 565 (2002)zbMATHCrossRefADSMathSciNetGoogle Scholar
  10. [10]
    A Pradhan and A Rai, Astrophys. Space Sci. 291, 151 (2004)zbMATHCrossRefADSGoogle Scholar
  11. [11]
    J Hajj-Boutros, J. Math. Phys. 26, 2297 (1985)zbMATHCrossRefADSMathSciNetGoogle Scholar
  12. [12]
    J Hajj-Boutros, Class. Quant. Grav. 3, 311 (1986)zbMATHCrossRefADSMathSciNetGoogle Scholar
  13. [13]
    ShriRam, Gen. Relativ. Gravit. 21, 697 (1989)CrossRefGoogle Scholar
  14. [14]
    ShriRam, Int. J. Theor. Phys. 29, 901 (1990)CrossRefGoogle Scholar
  15. [15]
    A Mazumder, Gen. Relativ. Gravit. 26, 307 (1994)CrossRefADSMathSciNetGoogle Scholar
  16. [16]
    U Camci, I Yavuz, H Baysal, I Tarhan and I Yilmaz, Astrophys. Space Sci. 275, 391 (2001)zbMATHCrossRefADSGoogle Scholar
  17. [17]
    A Pradhan and A Kumar, Int. J. Mod. Phys. D10, 291 (2001)Google Scholar
  18. [18]
    M S Berman, Nuovo Cimento B74, 182 (1983)ADSGoogle Scholar
  19. [19]
    M S Berman and F M Gomide, Gen. Relativ. Gravit. 20, 191 (1988)CrossRefADSMathSciNetGoogle Scholar
  20. [20]
    V B Johri and K Desikan, Pramana - J. Phys. 42, 473 (1994)CrossRefADSGoogle Scholar
  21. [21]
    G P Singh and K Desikan, Pramana - J. Phys. 49, 205 (1997)CrossRefADSGoogle Scholar
  22. [22]
    S D Maharaj and R Naidoo, Astrophys. Space Sci. 208, 261 (1993)zbMATHCrossRefADSGoogle Scholar
  23. [23]
    A Pradhan, V K Yadav and I. Chakrabarty, Int. J. Mod. Phys. D10, 339 (2001)Google Scholar
  24. [24]
    A Pradhan and A K Vishwakarma, Int. J. Theor. Phys. 11, 1195 (2002)zbMATHADSMathSciNetGoogle Scholar
  25. [25]
    A Pradhan and A K Vishwakarma, Indian J. Pure Appl. Math. 33, 1239 (2002)zbMATHMathSciNetGoogle Scholar
  26. [26]
    F Rahaman, N Begum and B C Bhui, Astrophys. Space Sci. 299, 211 (2004)CrossRefADSGoogle Scholar
  27. [27]
    D R K Reddy, R M V Subba and R G Koteswara, Astrophys. Space Sci. 306, 171 (2006)CrossRefADSGoogle Scholar
  28. [28]
    C P Singh and S Kumar, Int. J. Mod. Phys. D15, 419 (2006)ADSMathSciNetGoogle Scholar
  29. [29]
    C P Singh and S Kumar, Pramana - J. Phys. 68, 707 (2007)CrossRefADSGoogle Scholar
  30. [30]
    C P Singh and S Kumar, Astrophys. Space Sci. 310, 31 (2007)CrossRefADSGoogle Scholar
  31. [31]
    S Kumar and C P Singh, Astrophys. Space Sci. 312, 57 (2007)zbMATHCrossRefADSGoogle Scholar
  32. [32]
    A A Coley, Gen. Relativ. Gravit. 22, 3 (1990)zbMATHCrossRefADSMathSciNetGoogle Scholar
  33. [33]
    R Schuecker et al, Astrophys. J. 496, 635 (1998)CrossRefADSGoogle Scholar
  34. [34]
    S Perlmutter et al, Nature (London) 319, 51 (1998)CrossRefGoogle Scholar
  35. [35]
    S Perlmutter et al, Astrophys. J. 517, 565 (1999)CrossRefGoogle Scholar
  36. [36]
    A G Riess et al, Astrophys. J. 116, 1009 (1998)Google Scholar
  37. [37]
    R G Vishwakarma, Mon. Not. R. Soc. 345, 545 (2003)CrossRefADSGoogle Scholar
  38. [38]
    S W Hawking and G F R Ellis, The large scale structure of space-time (Cambridge University Press, Cambridge, 1973) p. 94zbMATHGoogle Scholar
  39. [39]
    Ø Grøn, Am. J. Phys. 54, 46 (1986)CrossRefADSGoogle Scholar
  40. [40]
    B Schwarzschild, Phys. Today 40, 17 (1987)ADSGoogle Scholar
  41. [41]
    P M Garnavich et al, Astrophys. J. 493, L53 (1998)CrossRefADSGoogle Scholar
  42. [42]
    A Kamenshchik, U Maschella and V Pasquier, Phys. Lett. B511, 265 (2001)ADSGoogle Scholar

Copyright information

© Indian Academy of Sciences 2009

Authors and Affiliations

  1. 1.Department of Applied MathematicsDelhi College of EngineeringDelhiIndia

Personalised recommendations