Advertisement

Pramana

, Volume 72, Issue 1, pp 217–227 | Cite as

The see-saw mechanism: Neutrino mixing, leptogenesis and lepton flavour violation

  • Werner RodejohannEmail author
Article

Abstract

The see-saw mechanism to generate small neutrino masses is reviewed. After summarizing our current knowledge about the low energy neutrino mass matrix, we consider reconstructing the see-saw mechanism. Indirect tests of see-saw are leptogenesis and lepton flavour violation in supersymmetric scenarios, which together with neutrino mass and mixing define the framework of see-saw phenomenology. Several examples are given, both phenomenological and GUT-related.

Keywords

Neutrinos leptogenesis lepton flavour violation 

PACS Nos

14.60.St 12.60.-i 13.35.Hb 14.60.Pq 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M C Gonzalez-Garcia and M Maltoni, arXiv:0704.1800 [hep-ph]Google Scholar
  2. [2]
    P F Harrison, D H Perkins and W G Scott, Phys. Lett. B530, 167 (2002)ADSGoogle Scholar
  3. [2a]
    Z Z Xing, Phys. Lett. B533, 85 (2002)ADSGoogle Scholar
  4. [2b]
    X G He and A Zee, Phys. Lett. B560, 87 (2003)ADSGoogle Scholar
  5. [3]
    C H Albright and M C Chen, Phys. Rev. D74, 113006 (2006)Google Scholar
  6. [4]
    P Minkowski, Phys. Lett. B67, 421 (1977)Google Scholar
  7. [4a]
    T Yanagida, in Proceedings of the Workshop on The Unified Theory and the Baryon Number in the Universe edited by O Sawada and A Sugamoto (KEK, Tsukuba, Japan, 1979) p. 95Google Scholar
  8. [4b]
    S L Glashow, in Proceedings of the 1979 Cargèse Summer Institute on Quarks and Leptons edited by M Lévy, J.-L. Basdevant, D Speiser, J Weyers, R Gastmans and M Jacob (Plenum Press, New York, 1980) p. 687Google Scholar
  9. [4c]
    M Gell-Mann, P Ramond and R Slansky, in Supergravity edited by P van Nieuwenhuizen and D Z Freedman (North Holland, Amsterdam, 1979)Google Scholar
  10. [4d]
    R N Mohapatra and G Senjanović, Phys. Rev. Lett. 44, 912 (1980)CrossRefADSGoogle Scholar
  11. [5]
    S Davidson and A Ibarra, J. High Energy Phys. 0109, 013 (2001)CrossRefADSGoogle Scholar
  12. [6]
    J R Ellis and M Raidal, Nucl. Phys. B643, 229 (2002)CrossRefADSGoogle Scholar
  13. [7]
    S Pascoli, S T Petcov and W Rodejohann, Phys. Rev. D68, 093007 (2003)Google Scholar
  14. [8]
    G C Branco et al, Nucl. Phys. B640, 202 (2002)CrossRefADSGoogle Scholar
  15. [9]
    E K Akhmedov, M Frigerio and A Y Smirnov, J. High Energy Phys. 0309, 021 (2003)CrossRefADSGoogle Scholar
  16. [10]
    X d Ji, Y c Li, R N Mohapatra, S Nasri and Y Zhang, Phys. Lett. B651, 195 (2007)ADSGoogle Scholar
  17. [11]
    C H Albright and M C Chen, arXiv:0802.4228 [hep-ph]Google Scholar
  18. [12]
    J A Casas and A Ibarra, Nucl. Phys. B618, 171 (2001)CrossRefADSGoogle Scholar
  19. [13]
    F Borzumati and A Masiero, Phys. Rev. Lett. 57, 961 (1986)CrossRefADSGoogle Scholar
  20. [13a]
    J Hisano, T Moroi, K Tobe and M Yamaguchi, Phys. Rev. D53, 2442 (1996)ADSGoogle Scholar
  21. [14]
    S T Petcov, S Profumo, Y Takanishi and C E Yaguna, Nucl. Phys. B676, 453 (2004)CrossRefADSGoogle Scholar
  22. [15]
    A Y Smirnov, arXiv:hep-ph/0402264Google Scholar
  23. [15a]
    M Raidal, Phys. Rev. Lett. 93, 161801 (2004)Google Scholar
  24. [15b]
    H Minakata and A Y Smirnov, Phys. Rev. D70, 073009 (2004)Google Scholar
  25. [16]
    K A Hochmuth and W Rodejohann, Phys. Rev. D75, 073001 (2007)Google Scholar
  26. [17]
    M Fukugita and T Yanagida, Phys. Lett. B174, 45 (1986)ADSGoogle Scholar
  27. [18]
    For a recent review, see S Davidson, E Nardi and Y Nir, arXiv:0802.2962 [hep-ph]Google Scholar
  28. [19]
    A Abada et al, J. Cosmol. Astropart. Phys. 0604, 004 (2006)CrossRefADSGoogle Scholar
  29. [19a]
    E Nardi, Y Nir, E Roulet and J Racker, J. High Energy Phys. 0601, 164 (2006)CrossRefADSGoogle Scholar
  30. [20]
    F X Josse-Michaux and A Abada, J. Cosmol. Astropart. Phys. 0710, 009 (2007)CrossRefADSGoogle Scholar
  31. [20a]
    S Antusch, S F King and A Riotto, J. Cosmol. Astropart. Phys. 0611, 011 (2006)CrossRefADSGoogle Scholar
  32. [20b]
    Recent overviews are S Blanchet and P Di Bari, Nucl. Phys. Proc. Suppl. 168, 372 (2007)CrossRefADSGoogle Scholar
  33. [20c]
    S Davidson, arXiv:0705.1590 [hep-ph]Google Scholar
  34. [20d]
    See also R Barbieri, P Creminelli, A Strumia and N Tetradis, Nucl. Phys. B575, 61 (2000)CrossRefADSGoogle Scholar
  35. [21]
    S Blanchet and P Di Bari, J. Cosmol. Astropart. Phys. 0703, 018 (2007)CrossRefADSGoogle Scholar
  36. [21a]
    A Anisimov, S Blanchet and P Di Bari, arXiv:0707.3024 [hep-ph]Google Scholar
  37. [22]
    S Pascoli, S T Petcov and A Riotto, Phys. Rev. D75, 083511 (2007)Google Scholar
  38. [23]
    G C Branco, R Gonzalez Felipe and F R Joaquim, Phys. Lett. B645, 432 (2007)ADSGoogle Scholar
  39. [24]
    S Davidson, J Garayoa, F Palorini and N Rius, Phys. Rev. Lett. 99, 161801 (2007)Google Scholar
  40. [25]
    G C Branco, T Morozumi, B M Nobre and M N Rebelo, Nucl. Phys. B617, 475 (2001)CrossRefADSGoogle Scholar
  41. [26]
    See e.g W Buchmüller, P Di Bari and M Plümacher, Ann. Phys. 315, 305 (2005)zbMATHCrossRefADSGoogle Scholar
  42. [26a]
    G F Giudice, A Notari, M Raidal, A Riotto and A Strumia, Nucl. Phys. B685, 89 (2004)CrossRefADSGoogle Scholar
  43. [27]
    S Davidson and A Ibarra, Phys. Lett. B535, 25 (2002)ADSGoogle Scholar
  44. [28]
    S T Petcov, W Rodejohann, T Shindou and Y Takanishi, Nucl. Phys. B739, 208 (2006)CrossRefADSGoogle Scholar

Copyright information

© Indian Academy of Sciences 2009

Authors and Affiliations

  1. 1.Max-Planck-Institut für KernphysikHeidelbergGermany

Personalised recommendations